SH 11 .A2 N66 no.13 c.2

NOAA Technical Memorandum NMFS F/NWR-13

COLUMBIA RIVER FISHERIES DEVELOPMENT PROGRAM ANNUAL REPORT FOR F.Y. 1984

MICHAEL R. DELARM AND EINAR WOLD

SEPTEMBER 1985

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service

NOAA Technical Memorandum NMFS F/NWR-13

This TM series is used for documentation and timely communication of preliminary results, interim reports, or special purpose information; and have not received complete formal review, editorial control, or detailed editing.

COLUMBIA RIVER FISHERIES DEVELOPMENT PROGRAM ANNUAL REPORT FOR F.Y. 1984

MICHAEL R. DELARM AND EINAR WOLD

SEPTEMBER 1985

LIB	RARY
DEC	1 1989
U.S. Depi	

COVER PHOTO: THE U.S. FISH AND WILDLIFE SERVICE SPRING CREEK HATCHERY. THE FACILITY IS LOCATED APPROXIMATELY 30 MILES UPSTREAM FROM BONNEVILLE DAM ON THE COLUMBIA RIVER.

U.S. DEPARTMENT OF COMMERCE MALCOLM BALDRIGE National Oceanic and Atmospheric Administration ANTHONY J. CALIO National Marine Fisheries Service WILLIAM G. GORDON

TABLE OF CONTENTS

INTRODUCTION
FISH CULTURE.
STUDIES
Washington Department of Figherica
Washington Department of Care
Idaho Dopartment of Rich and Game
Oregon Department of Fish and Game
Use Dick and Wildlife
U.S. Fish and Wildlife Service
STREAM IMPROVEMENTS
IRRIGATION SCREENS
OPERATIONS BRANCH
Fall Chinook Hatchery Evaluation
Transport Operations on the Snake and Columbia Rivers
Bioengineering Group
LITERATURE CITED
APPENDIX 1 - Mitchell Act
APPENDIX 2 - List of Selected Publications by the Environmental and
Technical Services Division Staff
APPENDIX 3 - A Brief Description and History of Oregon Department
of Fish and Wildlife Rearing Facilities
APPENDIX 4 - A Brief Description and History of Washington Department
of Game Rearing Facilities
APPENDIX 5 - A Brief Description and History of Washington Department
of Fisheries Rearing Facilities
APPENDIX 6 - A Brief Description and History of U.S. Fish and Wildlife
Service Rearing Facilities
APPENDIX TABLE 7 - Number and Pounds of Juvenile Salmonids Released By
the U.S. Fish and Wildlife Service
APPENDIX TABLE 8 - Number and Pounds of Juvenile Salmonids Released By
the Oregon Department of Fish and Wildlife A31
APPENDIX TABLE 9 - Number and Pounds of Juvenile Salmonids Released By

PAGE

TABLE OF CONTENTS

the Washington Department of Game
APPENDIX TABLE 10 - Number and Pounds of Juvenile Salmonids Released By
the Washington Department of Game
APPENDIX TABLE 11 - Adult and Jack Salmonids Returning to U.S. Fish
and Wildlife Service Hatcheries
APPENDIX TABLE 12 - Adult and Jack Salmonids Returning to Oregon
Department of Fish and Wildlife Hatcheries A39
APPENDIX TABLE 13 - Adult and Jack Salmonids Returning to Washington
Department of Fisheries Hatcheries
APPENDIX TABLE 14 - Adult and Jack Salmonids Returning to Washington
Department of Game Hatcheries
APPENDIX TABLE 15 - Release, Catch, and Return Statistics for 1978
- Brood Fall Chinook by Facility and Tag Code A42
APPENDIX TABLE 16 - Release, Catch, and Return Statistics for 1979
- Brood Fall Chinook by Facility and Tag Code A44
APPENDIX 17 - Partial Listing of Bioengineering Activities During
FY 1984

ii

INTRODUCTION

Congress passed the Mitchell Act in 1938 authorizing the appropriation of \$500,000 for surveys and improvements in the Columbia River watershed for the benefit and conservation of salmon (<u>Oncorhynchus sp</u>.) and steelhead (<u>Salmo gairdnerii</u>). The Act recognized that the salmonid resource was in serious and progressive decline due to destruction of favorable environmental conditions by hydroelectric projects, deforestation, pollution, and water diversions. The purpose of the initial appropriation was to reinvest funds the Government had received from fishermen for leases of seining grounds on the Federally owned Sand Island and Peacock Spit in the mouth of the Columbia River.

Stream census and surveys were initiated and by 1942 most tributary streams in the Columbia Basin had been surveyed. Data on various populations of salmon and steelhead were accumulated and information regarding unscreened irrigation diversions, impassable waterfalls, log and debris jams, splash dams, and sources of pollution were cataloged for future use. These surveys indicated a detrimental degradation of the original pristine habitat had occurred. Hydroelectric projects had reduced the area available to anadromous fish (Figure 1). Mining and lumber operations and unscreened irrigation diversions were adversely affecting salmon and steelhead in the remaining habitat.

The Mitchell Act was amended in 1946 (Appendix 1) which removed the limitations on subsequent appropriations from Congress for development of anadromous fish in the Columbia Basin. The Act authorized the utilization of facilities and services from the State conservation agencies of Idaho, Washington, and Oregon in developing the salmonid resources of the region. The Act also permitted closer cooperation between Federal and State governments and for the first time allowed transfer of monies to the States for specific work.

In 1947, State and Federal agencies recommended the formation of the Lower Columbia River Fisheries Development Program (CRFDP) as a way of maintaining salmon and steelhead resources in the Columbia Basin. This recommendation was endorsed by the Federal River Basin Inter-Agency Committee, U.S. Army Corps of Engineers, and U.S. Bureau of Reclamation. The resultant CRFDP was administered

FIGURE 1. - THE HISTORICAL AND PRESENT AREA AVAILABLE TO ANADROMOUS FISH IN THE COLUMBIA RIVER

under the U.S. Department of the Interior. The U.S. Corps of Engineers submitted, and Congress approved for FY 1949, an initial appropriation of \$1 million to be utilized by the CRFDP.

Prior to 1956, the CRFDP involved only the States of Oregon and Washington and included that part of the Columbia Basin located below McNary Dam. In 1956, Congress instructed the CRFDP to develop the fishery resources above McNary Dam, and Idaho became a participant in 1957. At this time the word "Lower" was dropped from the CRFDP name.

Since its creation, the CRFDP's goal has been to develop maximum salmon and steelhead runs into the Columbia Basin and increase adult contribution to the various fisheries and escapement. To work towards that goal, the CRFDP has concentrated on three areas; hatchery construction and operation, stream improvement and screening irrigation diversions, and quality improvement studies.

In 1970, with the reorganization of Federal fisheries responsibilities, the CRFDP was transferred from the Department of the Interior to the Department of Commerce. It is currently administered as part of the Environmental and Technical Services Division (ETSD) of the National Marine Fisheries Service (NMFS) in Portland, Oregon in cooperation with the U.S. Fish and Wildlife Service (USFWS), Oregon Department of Fish and Wildlife (ODFW), Washington Department of Fisheries (WDF), Washington Department of Game (WDG), and Idaho Department of Fish and Game (IDFG) (Figures 2 and 3).

In FY 1984 approximately \$ 9,583,600 was appropriated, the majority of which went to the USFWS and State agencies (Figure 4) with approximately 6.9 percent of funds used in-house. The majority of expenditures (83.0 percent) was used for hatchery operation and maintenance (Figure 5). Through FY 1984 approximately \$147,446,555 million has been provided by the CRFDP for production and enhancement of salmonids (Table 1).

Information concerning CRFDP and other ETSD activities are published periodically under the NOAA Technical Memorandum NMFS F/NWR series and other

Figure 2 -- Organizational Chart Showing the Location of the Columbia River Fisheries Development Program in the Federal Government.

Figure 3 -- Table of Organization for the Environmental and Technical Services Division.

Table 1.-- FUNDS EXPENDED BY THE COLUMBIA RIVER FISHERIES DEVELOPMENT PROGRAM 1949-1984

FISCAL YEAR	CONSTRUCTION	O&M AND STUDIES	POLLUTION ABATEMENT	TOTAL
1949	\$1,000,000	0	0	\$1,000,000
1950	1,192,500	7,500	0	1,200,000
1951	2,118,813	94,130	0	2,212,943
1952	1,525,451	149,983	0	1,675,434
1953	2,935,000	476,885	0	3,411,885
1954	1,750,000	634,814	0	2,384,814
1955	1,000,000	1,080,305	0	2,080,305
1956	900,000	972,527	. 0	1,872,527
1957	1,400,000	1,274,133	U	2,674,133
1958	1,600,000	1,215,091	U	2,815,091
1757	1,000,000	1,404,498	U	3,004,498
1944	1,200,000	1,025,157	0	7 741 100
1942	4 434 000	1 974 940	0	3,304,427
1963	1,608,200	2,056,563	0	3,664,763
1964	945 700	2 049 416	0	3 015 116
1965	588,000	2,273,900	0	2.861.900
1966	968,700	2,382,800	õ	3,351,500
1967	1,050,000	2,429,000	0	3,479,000
1968	0	2,599,200	0	2,599,200
1969	420,000	2,571,300	0	2,991,800
1970	1,048,000	2,886,000	0	3,934,000
1971	0	2,939,400	0	2,939,400
1972	0	3,020,400	0	3,020,400
1973	0	3,314,000	0	3,314,000
1974	63,400	3,301,300	394,500	3,759,200
1775	1,095,000	3,799,800	495,700	5,370,500
1976	781,800	4,439,100	500,000	5,720,900
1.4. 1/	445 400	1,177,700	7,400	1,187,300
1977	445,100	5,007,300	500,000	5,752,400
1778	217,000	5,646,600	500,000 2 202 000	0, 303, 000
1980	9,100	6.385.100	500,000	6,894,200
1981	,,100	6 821 300	384 800	7 208 100
1982	Ő	7,801,900	000,000	7.801.900
1983	Ō	9,583,600	õ	9,583,600
1984	190,434	9,393,166	0	9,583,600
TOTALS	\$30,536.698	\$110,826,757	\$6,083,400	\$147,446.555

1/ T.Q. refers to the three month Transition Quarter from July to September necessitated by a change in Federal fiscal year reporting dates. publications. The series is subjected to peer review and editing and may be cited as a publication. Copies of the reports may be ordered from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161. A list of NOAA publications completed by this office is presented in Appendix 2.

FISH CULTURE

The original plan for artificial propagation under the CRFDP envisioned construction, enlargement or renovation of 31 hatcheries over a ten-year period. In 1949, part of the initial \$1 million was used to initiate construction of Klickitat and expand Spring Creek National Fish Hatchery. Clackamas (not one of the original 31) was the last hatchery constructed and was jointly funded by Portland General Electric Company and the CRFDP in 1979. Due to changes in the initial plan, a total of 22 hatcheries and 3 major rearing ponds have been constructed (Figure 6, Appendix 3, 4, 5, 6). All except for the Toutle Hatchery continue to produce salmon, steelhead trout, or sea-run cutthroat. Toutle hatchery was destroyed during the May 18, 1980 eruption of Mt. St. Helens.

The CRFDP rearing facilities are concentrated in the lower Columbia Basin below The Dalles Dam with only the two Ringold facilities located above that point (Tables 2 and 3). In addition to the main rearing facilities many hatcheries operate satellite rearing ponds (Table 4). These satellite facilities serve to extend production through outplants to surrounding areas.

Since 1949, the CRFDP has utilized the majority of funds on fish culture, including construction, operation, and maintenance of hatcheries. In FY 1984 83.0 percent of appropriated funds were provided for hatchery operations (Figure 5). Stream improvement (7.1 percent), quality improvement studies (3.0 percent), and various in-house functions (6.9 percent) account for the remaining appropriated funds.

Production from CRFDP facilities totaled approximately 107 million fish during the year (Table 5, Appendix Tables 7, 8, 9, 10). Species such as spring chinook salmon, coho salmon, steelhead trout, and sea-run cutthroat are usually

Table 2.--Columbia River Fisheries Development Program Facilities - Columbia Basin --Washington

ncy <u>1/</u>		SFWS		SFWS					SFWS	SFWS		. USFWS			
Age		NMFS. US	NMFS	NMFS. US	NMFS	NMFS	NMFS	NMFS	NMFS. US	NMFS. US	NMFS	NMFS. CE	NMFS	NMFS	NMFS
rear Anagromous Operation Begar		1959	1958	1932	1954	1961	1959	1950	1898	1951	1956	1901	1952	1958	1962 1962
Anadromous Releases 1981		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes Yes
species keared 1960-81		fc(sc,co,sh)	sh, src	sc, co(fc,sh)	fc, co (ch)	fc, co, ch	fc, sc, co	fc, sc, co	fc, sc, co(ch)	co (fc, sc)	sh (fc)	fc (co)	fc, sc, co	fc, co (ce)	fc, sc, co sh
$\frac{1}{\text{Agency}}$		USFWS	MDG	USFWS	WDF	WDF	WDF	WDF	USFWS	USFWS	MDG	USFWS	WDF	WDF	WDF WDG
District		3rd	3rd	4th	3rd	3rd	3rd	4th	4th	4th	4th	4th	3rd	4th	5th 5th
neral Location		Longview	Cathlamet	Carson	Cathlamet	Grays River	Kalama	Glenwood	Cook	Cook	Washougal	Underwood	Toutle	Washougal	Ringold Ringold
Facility Ge	Hatcheries	Abernathy	Beaver Creek	Carson	Elokomin	Grays River	Kalama Falls	Klickitat	Little White Salmon	Willard	11 Skamania	Spring Creek	Toutle	Washougal	Rearing Ponds Ringold Salmon Ringold Trout

USFWS-U.S. Fish and Wildlife Service, NMFS-National Marine Fisheries Service, WDF-Washington Department of Fisheries, WDG-Washington Department of Game, CE-U.S. Army Corps of Engineers 1

fc-fall chinook salmon, sc-spring chinook salmon, co-coho salmon, ch-chum salmon, ce-cherry (masu) salmon, sh-steelhead trout, src-sea run cutthroat 2/

Table 3.--Columbia River Fisheries Development Program - Columbia Basin -- Oregon

1								PGE								
nding1/	60110		,	•	CE			I. NMFS.								
Fui	R		NIMPO	ILIN	NMF	NME		ODFV	NMFO	AINT O	LININ	NMFO	NIME		NMFS	
Year Anadromous Operation Regan			0001	OCCT	1909	1958		1979	1957	1060	DO LT	1911	1038		1950	
Anadromous			Voc	201	Yes	Yec		Yes	Yes	Vor	103	Yes	V.pc		Yes	
s Reared 0-81 Re			ch(ch)	1110/110 60	(sh)	(sc.ch)	1		.sh(fc)	cr chl	11062062	o. sh	(co)	1001	(sc,sh)	
Specie 196			fr ri	5	tc, c	fc.co		SC	sc.co	ch (f		fc, co	fc. St		tc, co	
Operating ₁ / Agency			ODFW	i i do	UUFW	ODFW		UULW	USFWS	ODFW	i	ODFW	ODFW		UDFW	
Congressional District			lst	c	Sra	3rd	Dad		Znd	lst		IST	2nd	L	0117	
ieneral Location			Knappa	Donnoille	DUILIEVITIE	Cascade Locks	Fetarada		EStacada	Westport	Actoria	ASLOFIA	Cascade Locks	Sandur	Januy	
Ċ													•			
Facility		Hatcheries	Big Creek	Ronneville		Lascade	Clackamas		rayle ureek	Gnat Creek	Chinedaely		UXBOW	Sandy	course of the second	

ODFW-Oregon Department of Fish and Wildlife, USFWS-U.S. Fish and Wildlife Service, CE-U.S. Army Corps of Engineers, PGE-Portland General Electric 1

fc-fall chinook salmon, sc-spring chinook salmon, smc-summer chinook salmon, co-coho salmon, sh-steelhead trout 21

Agency	Hatchery	Satellite
USFWS	Spring Creek	Big White Salmon Pond
ODFW	Gnat Creek	Trojan Ponds
	Oxbow	Wahkeena Pond
	1	Herman Creek Ponds
WDG	Skamania	Vancouver Pond Gobar Pond
	Beaver Creek	Alder Creek Pond
		Coweeman River Net Pen
		Toutle River Trap
		Coal Creek Cooperative
WDF	Kalama Falls	Lower Kalama Hatchery Gobar Pond
	Grays River	Weyco Pond

Table 4. -- Satellite Rearing and Acclimation Facilities Operated by Each Agency

kearing
Funded F
Program
)evelopment
River [
Columbia
from (
Pounds
and
Numbers
in
Salmonid: 1960-84.
of es.
Releases Faciliti
ł
Table 5.

	s	0s)																									
	ls Pound	(10,00	74.3	95.1	105.2	130.6	163.6	175.4	194.1	196.4	195.4	211.2	229.0	223.7	286.7	284.3	266.6	288.2	328.5	331.6	362.8	331.6	321.5	308.6	306.1	304.1	344.8
	Tota	(millions)	98.3	62.5	72.0	82.2	91.3	79.0	80.9	83.1	78.0	82.3	85.1	90.8	97.1	98.6	92.4	95.5	114.2	128.6	123.5	120.1	110.3	102.4	105.4	105.2	106.7
	ead Pounds	(10,000s)	13.6	10.8	13.9	13.8	23.3	24.8	30.8	28.8	32.5	26.9	45.5	30.8	37.1	41.3	33.2	29.4	33.0	35.4	39.9	38.6	33.0	38.0	35.2	33.1	41.4
	Steelh	(millions)	1.0	0.9	1.6	1.4	1.7	1.9	2.5	2.3	3.0	2.3	2.9	2.4	2.5	2.5	2.3	1.9	2.1	2.2	2.4	2.4	2.2	2.3	2.1	2.1	3.3
	Pounds	(10,000s)	21.7	50.7	57.2	75.7	77.5	85.4	103.2	100.0	86.7	110.4	99.7	120.7	152.1	119.7	117.7	138.3	132.6	155.6	165.8	113.3	124.0	112.2	97.8	107.5	128.3
	Coho Numbers	(millions)	6.4	14.2	12.9	19.6	16.5	17.9	19.7	20.2	15.7	18.6	17.4	21.3	23.9	20.9	20.2	21.1	22.2	26.3	26.3	21.1	20.8	19.2	17.4	21.7	22.3
	inook Pounds	(10,000s)	6.0	3.0	5.8	8.5	22.1	10.2	11.2	17.8	16.7	16.5	14.8	23.9	25.3	40.1	26.9	32.7	48.0	37.2	40.9	60.6	51.2	52.1	62.4	46.6	62.3
••••	Spring Ch Numbers	(millions)	1.8	0.8	1.7	2.4	7.6	3.0	3.8	5.5	3.8	3.5	2.6	3.8	3.6	4.8	4.4	5.2	5.9	5.1,	$5.5\frac{1}{2}$	7.55/	7.25/	7.6	7.3	6.9	8.7
-0007 600101	inook <u>1</u> / Pounds	(10,000s)	33.0	30.6	28.3	32.6	40.7	37.0	48.9	49.8	59.5	57.4	69.0	48.3	72.2	83.2	88.8	87.8	114.9	103.4	116.2	119.1	113.3	106.3	110.7	116.9	112.8
	Fall Ch	(millions)	89.1	46.6	55.8	58.8	65.5	56.2	54.9	55.1	55.5	57.9	62.2	63.3	67.1	70.4	65.5	67.3	84.0	95.0	89.3	89.1	80.1	73.3	78.6	74.5	72.4
		Year	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	19/9	1980	1981	1982	1983	1984

From 1972 on, part of the funds to operate the fall chinook program was supplied by outside sources such as the U.S. Army Corps of Engineers. Includes a small number of summer chinook reared at Program facilities. 2/ 1

reared more than one year and are released the second spring after hatching. Fall chinook and chum salmon are usually released the first spring after they are hatched.

Adult and jack returns to CRFDP facilities totaled 133,371 fish (Table 6, Appendix Tables 11, 12, 13, 14). Spring chinook, fall chinook, coho, steelhead, and sea-run cutthroat recoveries were 7,808, 36,699, 77,843, 9,711, and 1,218, respectively. In cases where surplus adults are recovered, they may be sold and the procedes credited to the CRFDP. Biological sampling for various bacterial and viral diseases commonly occurs during spawning operations (Figures 7 and 8). Program-funded facilities also attract increased numbers of the public during spawning season. Tours from nearby schools provide opportunities to educate youngsters on the value of this natural resource (Figure 9).

Table 6.	Adult and Jack	Returns to	Columbia River	Fisheries	Development
	Program Funded	Hatcheries	in 1984.		

	Fall	Spring					
	Chinook	Chinook	Coho	Chum	Steelhead	Cutthroat	Total
ODFW	15,658	2,521	43,075	92	695	199	62,240
WDF	9,983	1,525	25,300				36,808
WDG					7,585	1,019	8,604
USFWS	11,058	3,762	9,468		1,431		25,719
TOTAL	36,699	7,808	77,843	92	9,711	1,218	133,371

The WDG's Beaver Creek Hatchery had its water intake on the Elokomin River extensively modified in 1984 (Figure 10). Prior to the modification, salmon smolts released from WDF's Elokomin Hatchery which is located above Beaver Creek were pumped into the lower hatcheries' rearing ponds. The new intake effectively screens inriver fish and has alleviated the problem. It also has reduced the amount of trash pumped from the river into the hatchery.

The adult holding and spawning facility at WDF's Washougal Hatchery underwent extensive modification and reconstruction. The new facility eases spawning and allows individual salmon species to be held separately (Figure 11).

Figure 7. -- Spawning (upper photo) and obtaining scale samples (lower photo) from adult fall chinook

Figure 8. -- Biological sampling for various bacterial and viral diseases of searun cutthroat trout during spawning operations.

Figure 9. -- Tour from nearby school observing spawning and operations at Big Creek Hatchery.

Figure 10. -- Beaver Creek Hatchery's original Elokomin River intake structure (upper left); construction of new intake (upper right), and completed construction (lower left) which occurred in FY 1984.

Figure 11. -- New holding pond and spawning facility constructed at Washougal Hatchery during FY 1984.

Funds were provided to initiate major rehabilitation at WDF's Klickitat Hatchery late in the fiscal year. Many of the existing raceways at this hatchery are crumbling beyond repair. Also, the freezer building ceiling has collapsed and is being held in place with a temporary plywood support. New raceways and a freezer building are to be constructed during the summer and fall of 1985.

STUDIES

Since its creation, the CRFDP has assumed a lead role in protecting the anadromous resource and enhancing fish culture. CRFDP studies have resulted in major advancements in fish culture. Oregon moist pellets (OMP) and Abernathy dry diets were developed with CRFDP funding and support. Both diets are currently in wide use and represented a tremendous improvement over prior diets. A second major development included two methods of mass marking juvenile fish. The first, a terramycin mark, is deposited on fishes bones when fed food coated with this drug. The drug is detectable as a fluorescent yellow ring when bones are viewed in a special wave length fluorescent light under a microscope. This method is limited in its use to studies that are based on returns to hatcheries. The second method included the development of a prototype of the coded-wire tag (CWT). This research served as a foundation for the development of the tags which are currently in use world-wide. The tag itself is only 0.042 inch long and contains information on its surface in the form of binary notches.

Studies funded by the CRFDP have typically encompassed a wide spectrum of activities. These have included broad hatchery evaluations using fin-marks and CWT's, evaluations of time/size at release, assessments of performance for various stocks of fish, and development of new techniques for use in salmonid culture.

Several studies were supported by the CRFDP this year, the majority of which are conducted by the cooperating agencies. The objective of these studies is to improve the quality of juvenile fish and improve adult contribution to the various fisheries.

Washington Department of Fisheries (WDF)

The WDF continued three studies this year; one is to determine the effects of six loading densities of coho salmon on survival and contribution to the fisheries. The stated objectives of the study are to (1) detail the effects that flow-related loading has on ultimate performance of coho salmon and (2) determine the most advantageous loadings to be utilized at Washougal and Grays River hatcheries. This study differs from other density studies in that loadings are being calculated on inflow rather than pond volume because production at WDF facilities is limited by water quantity rather than pond space. Preliminary information should become available in FY 1986.

The second study involved investigating methods of reducing the incidence of coagulated yolk disease in chinook salmon at Grays River and Elokomin hatcheries. Coagulated yolk or white spot disease has historically been the source of high mortalities in both alevin and fry at several Columbia River hatcheries. Work conducted since 1979 indicates that fish incubated in artificial substrate show improved survival. The FY 1984 study investigated water quality parameters and adult spawning time at Grays River Hatchery. Results indicated water quality at the hatcheries and adult spawning time were unrelated to mortality.

The third investigation incorporated a time of release study for fall chinook at Washougal hatchery. This was the second of four years fall chinook are to be marked to determine if fall releases will increase survival without suffering unacceptable losses while rearing through the summer. Historical survival rates at Washougal hatchery have averaged 0.7 percent for fall chinook released in May at 90-100 per pound. However, one group released in November 1974 at 8 fish per pound survived at 4.88 percent. The WDF is testing the fall time of release strategy by releasing approximately 100,000 coded-wire tagged fish in June, September, October, and November. Preliminary information should become available in FY 1988.

Washington Department of Game (WDG)

The WDG continued their steelhead study on the Kalama River. This will be the last year of field activities for the study. A final report will be due at the end of FY 1985 which will summarize all data collected. A successful method has been developed under this investigation which utilizes a genetic mark to identify different groups of fish. This was accomplished by selectively breeding fish at Skamania Hatchery that had certain genotypes which do not occur or which occur in small numbers in native fish in the Kalama River system. By examining genotypes of wild steelhead in the Kalama River, it has been possible to distinguish hatchery-reared steelhead from wild steelhead. This technique, involving electrophoresis has shown to be an effective identification tool and is in use in other areas with other studies.

Idaho Department of Fish and Game (IDFG)

Idaho conducted two ongoing studies this year. The first is titled Clearwater River Development of Spring Chinook and Steelhead Stocks. The objective is to restore the Clearwater drainage chinook and steelhead runs to self-sustaining and fishable populations. This program has been in existence since 1961. The old Washington Water Power Dam located near Lewiston, Idaho was a primary factor in the depressed runs and in 1972 this dam was removed. Adult fish are collected, eggs taken, and eyed eggs and smolts planted in hatching channels or rearing ponds in the Selway and South Fork Clearwater rivers.

The second investigation involves attempting to bolster the remnant population of sockeye salmon returning to several lakes in the upper Salmon River drainage with stocks obtained from Fulton River, British Columbia. Historically, Idaho's Salmon River drainage had large runs of sockeye. The Payette River system alone had a run in excess of 100,000 fish and Redfish Lake was named for its sockeye runs. Sunbeam Dam on the Salmon River and Black Canyon Dam on the Payette River blocked these runs during the early 1900's. Sunbeam Dam was later removed but was in place long enough to reduce the sockeye runs to a few pair since that time. Beginning in 1980, sockeye eggs have been obtained from the Government of Canada, transported to Idaho for rearing, and

released. A total of 147,000 and 63,000 fingerlings were released this year into Stanley and Alturas lakes, respectively.

Oregon Department of Fish and Wildlife (ODFW)

The ODFW has experimented with different diets in recent years. This season, Sandy Hatchery and Wahkeena Pond coho salmon were fed a closed formula dry diet. Preliminary results indicated problems with getting the fish to accept the diet. ODFW also conducted unannounced quality control inspections of the feed manufacturing plant. Ingredients were sampled, formulations checked, conditions examined, and samples taken to ensure feed quality is maintained.

The ODFW is continuing work on a final report of the Columbia River coho salmon time of release experiment. In that study, yearling coho salmon were released in early May, June, and July of 1979, 1980, and 1981. Preliminary results have been reported (Westgate 1979, 1980, 1981, 1982, 1983). Those results indicated a substantial increase in adult coho salmon survival occurred when yearlings were released in June and July as compared to May each year the study was conducted.

Work progressed on the implementation of juvenile salmonid population rearing levels at hatcheries. The goal is to formulate rearing programs specific to the species and rearing conditions found at each hatchery. Water flow, temperature, and fish size are major factors that limit allowable loads of rearing ponds. During FY 1984, daily water temperatures from all Columbia river hatcheries for recent years was compiled and computerized. These data will be integrated with measurements of available water flows and fish growth regimes to establish maximum population levels at various life stages. On that basis, an evaluation for juvenile coho salmon at Cascade Hatchery resulted in pond loadings that would be considerably below those that have recently been reared.

U.S. Fish and Wildlife Service (USFWS)

The USFWS continued studies to evaluate the effect of density on fish

survival at Carson NFH (spring chinook) and Willard NFH (coho salmon). Two broods of coded-wire-tagged coho (1981 and 1982) have been released in 1983 and 1984. The first brood of marked spring chinook was released in 1984 and three more years of marking are planned. The study design includes use of two variables, the number of fish per raceway, and the amount of water flow per raceway. Juvenile spring chinook at Carson NFH had significantly higher mortalities due to bacterial kidney disease in raceways with the lowest water inflows. Tag recoveries for spring chinook will not be available until 1986 or 1987.

In 1984, 1,050 coded-wire-tagged 3-year-old 1981-brood coho from density and loading studies at Willard NFH returned from the sea and were recovered at the Little White Salmon NFH rack. A summary of the returns by pond loading treatment is shown in Table 7. Preliminary analyses of this data indicate that rate of water flow into raceways had no effect on return of adults to the hatchery. This may be a reflection of the cold year-around water temperatures at Willard NFH and a resulting low metabolic rate in fish reared in all pond loading treatments. There were differences, however, among the density treatments (number of fish reared per raceway). A significant inverse relationship was found between increased rearing density and the rate (percent) of adult return. However, expanded total fish contributions were significantly higher from raceways in which fish were reared at the highest densities. In comparing the highest with the lowest density treatments, rate of return decreased by 25 percent but total adult contribution increased by 221 percent.

Blood chemistry was also monitored for the density study. The USFWS, Oregon Cooperative Fishery Research Unit, Oregon State University, did the measurements. Such factors as fish size, plasma hormone profiles, carticosteroid dynamics, immunological competence, histology, and water quality parameters were investigated. For coho, the results have shown that raceway density and/or water inflow rate can affect the physiological status of the fish, and seawater adaptability may also be affected.

	Numbe	r of Fish per Rac	eway	Overall
Water Inflow	25,000	50,000	75,000	Mean <u>h</u> /
200 gpm				
Percent Return	0.286	0.284	0.242	0.271
No. Contributed b/	133	· 272	334	246
400 gpm				
Percent Return	0.262	0.256	0.189	0.236
No. Contributed	122	239	266	209
600 gpm				
Percent Return	0.341	0.236	0.227	0.268
No. Contributed	158	223	317	233
Overall Mean				
Percent Return	0.296 <u>c</u> /	0.259 <u>cd</u> /	0.219 <u>d</u> /	
No. Contributed	138 <u>e</u> /	245 <u>f</u> /	306 <u>g</u> /	

Table 7. -- Hatchery Returns of Three-Year-Old Coho Salmon From Raceway Density and Loading Studies at Willard NFH <u>a</u>/

a/ Each cell value represents the mean of paired ponds.

- b/ Estimated contribution = (no. tagged fish returned from each treatment/no. of tagged fish released in each treatment) (total no. of fish released in each treatment).
- <u>cd</u>/ Column means for percent return with different superscripts are significantly different.
- efg/ Column means for contribution are significantly different.
- h/ Row means for percent return and contribution are not significantly different.

STREAM IMPROVEMENTS

A major emphasis in the early years of the program to increase the abundance of salmonids was the construction of fishways and the removal or modification of both natural and man-made barriers affecting fish migration. These activities were authorized and directed by Section 2 of the amended Mitchell Act. To date, approximately two thousand miles of prime rearing and spawning habitat formerly inaccessible to returning adult fish have been opened up. Current stream clearance work consists primarily of yearly surveys by state fish and wildlife departments. These surveys detect and allow removal of obstructions before they cause major fish passage problems. In addition, fish ladders are maintained to assure proper operation.

The three state agencies, ODFW, WDF, and IDFG, currently operate 31 fish ladders or fish ladder complexes in the basin. The ODFW, WDF, and IDFG operate 15, 14, and 2 ladders, respectively (Table 8). In addition Oregon has rock cut fish passes that require no formal operation but only periodic inspection. The WDF also operates several informal ladders in the lower Columbia River tributaries. The size and complexity of fishways and ladders vary from simple rock cut passes a few feet in height to the large and complex Willamette Falls fish ladder which opened up the entire Willamette River above Oregon City to anadromous salmonids.

IRRIGATION SCREENS

The CRFDP involvement in screening irrigation diversions began in the early to mid-1950's. The initial task in developing a screen program was to identify and describe the need for one. To define the problem, the CRFDP initiated watershed surveys of the mid-Columbia and Snake rivers and their tributaries in the 1950's. The resulting sub-basin reports located and enumerated most unscreened irrigation diversions in the target watersheds. The reports described serious problems needing corrective action. Construction began in the mid-1950's and has continued to some extent into the 1980's.

Table 8. -Fish Ladders or Ladder Complexes Operated Under the Columbia River Fishery Development Program.

Agency	Ladder	Location
ODFW *	Barth Falls	NF Klaskanine River
	Bonnie Falls	NF Scappoose Creek
	City of Lostine Dam	Lostine River
	Clatskanie Falls	Clatskanie River
	Elkhorn Falls	Little North Santiam River
	Fifteenmile Creek Falls	Fifteenmile Creek
	Goble Creek Falls	Goble Creek
	Minam River Falls	Minam River
-	Oregon Iron & Steel Dam	Tualatin River
	Pegleg Falls	Callawash River
	Punchbowl Falls	WF Hood River
	Sheepridge Dam	Lostine River
	Threemile Dam	Umatilla River
	Wiley Creek Falls	Santiam River
	Willamette Falls	Willamette River
WDF **	Cameron	Abernathy Creek
	Casteel	Klickitat River
	Cedar Creek	Lewis River
	Delimeter	Cowlitz River
	Johnson	Lewis River
	Kalama Falls	Kalama River
	Klickitat #2	Klickitat River
	Klickitat #5	Klickitat River
	Little Kalama	Kalama River
	Ostrander	Cowlitz
	Shippard Falls	Wind River
	Trout	Wind River
	Washougal	Washougal River
	Winkler	Washougal River
IDFG	Middle Fork	Middle Fork Salmon River
	Selway	Selway River

* Also operates "rock cut fish passes" on the Yamhill, Willamina, Molalla, Santiam, and Mohawk rivers.

** Also operates several informal ladders on lower Columbia River tributaries.

Since the CRFDP began, over 600 screens have been constructed in Oregon, Idaho, and Washington. Oregon and Idaho have constructed 400+ and 236 screens respectively. Due to variations in the number of diversions used each year, Oregon and Idaho operate approximately 380 and 200 screens, respectively. Washington currently operates 16 screens with program funding.

Due to varying ditch sizes, orientations, and capacities, the screens can vary from simple fixed plate to multi-drum screens (Figures 12 and 13). Oregon and Washington operate primarily drum screens. Idaho originally installed perforated plate wiper blade screens but are in the process of converting to drum screens. They have the manpower to convert 4-5 screens to drums per year.

A typical irrigation diversion consists of a temporary rock-log wing dam extending upstream and across the river, although permanent concrete structures requiring adult fish passage facilities are also used. The angle at which the diversion leaves the river can vary from a few degrees to 90 degrees. The diverted water in many cases passes through a headgate structure used to regulate flow. The water and fish move down the canal, through a trash rack and water passes through the screen; the fish are deflected by the screen into a bypass pipe which transports them back to the river downstream of the wing dam. Diversion flows range in size from less than one cubic feet per second (cfs) to well over 100 cfs. In general, Oregon has much smaller diversions than Idaho or In some cases, diversions totally dewater a stream, causing Washington. migration problems to both juvenile and adult migrants. Without adequate screening and bypass facilities, juvenile fish would end up in ranchers' fields or be left stranded in the irrigation canal at the end of the season.

Over 600 diversions in the basin have been screened with CRFDP funds. There remain significant numbers of ditches unscreened in certain watersheds. The Walla Walla River in Oregon may have over 30 unscreened diversions. The Imnaha, Wallowa, Grande Ronde, and Umatilla rivers, all in Oregon, have unscreened ditches. Recognizing a potential problem, the CRFDP is sponsoring an ODFW study to identify all irrigation screen problems and requirements for correction in northeastern Oregon in 1985. There also remain several unscreened diversions in the Sawtooth National Recreation Area on the upper Salmon River in

Figure 12. -- Typical electrically powered drum screen found in Idaho.

Figure 13. -- Typical paddle wheel-driven fixed-plate wiper blade screen found in Idaho.

Idaho. The Idaho diversions have been identified and will be screened in the future. To obtain additional information concerning the screen program, refer to Delarm et al. (1985).

OPERATIONS BRANCH

Early in 1984 the ETSD was reorganized (Figure 3). Prior to that time the ETSD was divided into three branches; the CRFDP, the Fish Facilities Branch (engineering), and the Environmental Assessment Branch. The ETSD was reorganized into two branches - Operations and Habitat Conservation. The CRFDP continues to be managed by the ETSD.

Fall Chinook Hatchery Evaluation

The Bonneville Power Administration (BPA) began funding an 8-year study in 1979 to determine distribution, contribution, and value of fall chinook salmon reared at Columbia River hatcheries. FY 1984 was the sixth year of the study. Information from this tagging study will provide data to determine the effectiveness of hatcheries constructed as mitigation for hydroelectric developments. In addition, these data will aid fishery agencies in planning further measures to protect, mitigate, and enhance salmon runs on the Columbia River. This information is important to regulating bodies, such as the Pacific Fishery Management Council, charged with negotiating, setting, and adjusting fishing seasons, locations, and limits. Current regulations are based on data from a fin-marking study completed over ten years ago. Since completion of that study, new rearing facilities have been built, existing facilities renovated, alterations in sport and commercial fisheries have occurred, and hatchery practices have changed.

The objectives of the study are to (1) determine the contribution of hatchery fall chinook from Columbia River hatcheries to individual Pacific salmon fisheries by age class of fish and (2) determine the distribution, contribution, and value of each hatchery's production of fall chinook to Pacific coast salmon fisheries.

The desired goal to achieve objective 1 was to tag a constant percentage of fish at each rearing facility. A goal of tagging at least 150,000 fish at each facility was set to achieve objective 2. Attempts were made to meet both goals at each hatchery. This required additional tag codes at some hatcheries because the number of fish tagged for the constant percentage was insufficient to meet the 150,000 goal.

Nearly 14 million tagged fall chinook were released from the participating facilities during the four brood years. Releases were 4,035,100, 2,864,700, 3,466,400, and 3,475,500 for the 1978-through-1981 brood years, respectively. The percentage of the releases tagged each year was 4.4, 3.5, 3.9, and 4.1 for the four broods, respectively. Total yearly releases ranged from 81 million to 92 million from the participating facilities.

Sport and commercial fisheries from Alaska through California are being sampled for wire-tagged salmonids (Figure 14). Recoveries of the 1978 brood began in 1980. Fishery recoveries of the 1981 brood will not be complete until 1986.

Final estimated catch data are not yet available for any complete brood of fall chinook marked for this study. Values are available through 1982 for British Columbia, Washington, Oregon, and Columbia River fisheries. Fall chinook from Columbia River hatcheries are predominantly recovered in these fisheries. Appendix Tables 15 and 16 show tagged releases and tag recovery statistics for the 1978 and 1979 broods. For more indepth information, see Vreeland (1985).

Transport Operations on the Snake and Columbia Rivers - 1984

The Fish Transportation Oversight Team (FTOT) continued to manage the transport program and provided coordination between Walla Walla District, Corps of Engineers (NPW), fishery agencies, and tribes. The FTOT is composed of biologists from the National Marine Fisheries Service (NMFS), Idaho Department of Fish and Game (IDFG), Columbia River Inter-Tribal Fish Commission (CRITFC),

Figure 14. Ports and zones sampled for tagged fall chinook of Columbia River origin.
and NPW. The IDFG member was chairman for the team. Line of authority and responsibilities for transporting salmonids is given in Figure 15.

The FTOT's goal is to maximize survival of Snake and Columbia River salmonids by improving collection, transport, and bypass conditions for juvenile migrants. Responsibilities include providing coordination; biological and program oversight, developing an annual work plan; conducting on-site inspections of collection and transport facilities prior to, during, and after the season; and producing an annual report summarizing transport activities. A meeting is hosted by FTOT each summer for program participants and other interested individuals to discuss current season's operation and recommend program and facility modifications for the following year.

Additional biological oversight is provided by cooperative agreements between NPW and the States of Idaho, Oregon, and Washington. Under these cooperative agreements NPW funds State fishery biologists at each transport project. Idaho's representatives were assigned to Lower Granite, Oregon's to Little Goose, and Washington's to McNary. Work loads were shared by NPW's project biologists and State biologists.

Juvenile salmonids were collected and transported from the Snake River at Lower Granite (River Mile (RM) 107.5) and Little Goose (RM 70.3) dams, and from the Columbia River at McNary Dam (RM 292). The Snake River, a major tributary of the Columbia River, joins at RM 324.3. Collected smolts were transported below Bonneville Dam (RM 146.1) via truck or barge and released into the river. Transported smolts bypass 4 to 8 dams and 145 to 280 miles of impounded river (Figure 16).

The 1984 transport season commenced April 1 and ended on September 28. A total of 11,033,317 smolts were collected including 2,052,119 at Lower Granite, 2,737,422 at Little Goose, and 6,243,776 at McNary. Total collection included 1,504,941 and 445,922 smolts bypassed at McNary and Little Goose, respectively. Bypass operations began the first day of operation and ended on May 2 and May 29 at Little Goose and McNary, respectively.

Columbia Basin Fish & Columbia River Wildlife Council Inter-tribal Fish Commission Water Budget Center		Fish Transportation Oversight Team (FTOT) NMFS IDFG NPW CRITFC Responsibilities	Transport coordination and program oversight Prepare annual work plan	Inspection and oversight of collection and transportation	facilities and quality control Identify and recommend changes	needed in facilities and equipment or their operation Assimilate data and write annual report
Idaho Department of Fish and Game Oregon Department of Fish and Wildlife Washington Department of Fisheries	Washington Department of Game State Biologist (Idaho)	State Biologist (Oregon) State Biologist (Washington)	Responsibilities	Inspection and quality control of collection and transportation equipment and facilities	Monitor fish sampling and handling	Monitor water quality and fish condition Compile data and write progress reports
District Engineer	Lower Granite Project Engineer	NPW / Little Goose Coordinator / Project Engineer Project Biologist McNary Project Engineer	Project Biologist Responsibilities	Maintenance of transportation, collection, bypass, and holding facilities and equipment	Operate and monitor collection and trans- portation equipment and facilities	Contract tug and tractor rental Administer cooperative agreements and task orders for State biologists

Figure 15. Line of authority and responsibilities for trapping and transportation of juvenile salmon and steelhead trout from collection points at Lower Granite, Little Goose, and McNary Lock and Dam projects to release sites below Bonneville Lock and Dam. Dotted line denotes line of communication and solid line is supervision

PACIFIC OCEAN

LOCHTIONS OF FISH COLLECTION FACILITIES, TRANSPORTATION ROUTE, AND RELEASE SITE. Figure 16

	Trucked	Barged	Total
Lower Granite			
April 1-July 26			
Yearling chinook	97,807	726,657	824,464
Subyearling chinook	37,823	59,102	96,925
Steelhead	39,157	1,074,518	1,113,675
Sockeye	2,713	7,987	10,700
Coho	43	213	256
TOTAL	177,543	1,868,477	2,046,020
Little Goose			
April 5-July 28			
Yearling chinook	104,730	383,769	488,499
Subyearling chinook	73,446	84,150	157,596
Steelhead	55,506	1,562,043	1,617,549
Sockeye	2,133	8,530	10,663
Coho	0	0	0
TOTAL	235,815	2,038,492	2,274,307
McNary			
April 16-September 28			
Yearling chinook	28,599	263,973	292,572
Subyearling chinook	552,163	3,357,820	3,909,983
Steelhead	30,194	336,453	366,647
Sockeye	4,243	95,085	99,328
Coho	1,469	38,633	40,102
TOTAL	616,668	4,091,964	4,708,632
Grand Total	1,030,026	7,998,933	9,028,959

Table 9. -- 1984 Juvenile Fish Transport Summary and Dates of Operation.

	Lower Granite	Little Goose	McNary	Total
1978	1,980,600	996,285	82,211	3,059,906
1979	2,367,446	1,453,615	1,247,120	5,068,181
1980	3,830,747	2,282,987	1,740,545	7,854,279
1981	2,730,866	1,464,991	4,112,993	8,308,850
1982	1,851,616	1,234,110	3,003,853	6,089,579
1983	2,368,049	868,937	4,326,013	7,562,999
1984	2,046,020	2,274,307	4,708,632	9,028,959

Table 10. -- Summary by dam of all juvenile fish transported from 1978 through 1984.

Table 11. -- Transport summary of total juvenile fish trucked or barged from Lower Granite, Little Goose, and McNary Dams from 1978 through 1984.

	Trucked	Barged	Total
1978	1,580,724	1,478,372	3,059,096
1979	2,031,212	3,036,969	5,068,181
1980	3,019,232	4,835,047	7,854,279
1981	3,145,980	5,162,860	8,308,850
1982	2,152,901	3,936,678	6,089,579
1983	2,780,487	4,782,512	7,562,999
1984	1,030,026	7,998,933	9,028,959

A total of 9,028,959 juvenile salmonids were transported to below Bonneville, with Lower Granite accounting for 2,0456,020, Little Goose 2,274,307, and McNary 4,708,632 (Table 9). Barge transport accounted for 7,998,933 and trucking for 1,030,026. Tables 10 and 11 compare number of fish transported for the years 1979 through 1984. For an indepth description of the 1984 transport operations, see Koski et al. (1985).

Bioengineering Group

The Bioengineering Group of the Operations Branch functions in those areas where application of engineering capability and behavioral expertise is necessary to protect or develop the fisheries resource. The primary areas include 1) the development and implementation of instream flow requirements for fish in concert with streamflow regulation resulting from flood control, irrigation and hydro power system operation; 2) the design and operation of fish passage, protection, and production facilities; and 3) review of proposed activities in habitat areas which require Federal permit or license. Efforts are directed toward protecting and improving passage conditions along migration routes and toward minimizing adverse effects of water resource development on natural spawning and rearing areas. Effort is also directed toward providing effective hatchery facilities for salmon and steelhead production.

The Bioengineering Group provides biological and engineering expertise for the design and operation of fish passage and fish protective facilities for adult and juvenile anadromous fish at dams and water diversion structures. Although the primary objective of the Bioengineering Group is to develop methods of providing anadromous fish safe upstream and downstream passage at projects in the Northwest Region, it is also involved in fish protective activities throughout the country. Primary recipients of the services provided by the Section are Federal agencies, such as the Corps of Engineers, U. S. Bureau of Reclamation, U.S. Fish and Wildlife Service, and Federal Energy Regulatory Commission; private and public power companies; and various state fishery agencies. Activities of the Bioengineering Group fall into the following six categories:

- Review and establishment of functional fish facility design for Federal, Federally-funded, Federal Energy Regulatory Commission, and Nuclear Regulatory Commission licensed projects.
- 2. Review of fish facility project construction and operation.
- 3. Development of instream flow requirements and methods for fisheries agencies' participation in regional hydropower system operation to obtain river flows for anadromous fish.
- 4. Assistance in design review for Columbia River Fisheries Development Program activities.
- 5. Participation in interagency committees for design and review of fish protective facilities.
- Responses to requests from other Regions or agencies for assistance in designing fish protective facilities.

Recent Activities:

The types of projects the Bioengineering Group has been involved with have remained quite similar over many years. New hydroelectric projects being developed in the Region continue to require the development of general and site specific fish passage criteria and the planning and design of the appropriate facilities to satisfy these criteria. Existing projects continue to require structural and operational improvements to existing facilities based on on-site experience and continuing fish passage research.

As an example of recent work, in 1984, the Bioengineering Group continued to participate in planning, design and operation of fish passage facilities at all nine lower and mid-Columbia River dams, the four lower Snake River dams, and numerous smaller tributary dams in the Columbia Basin and other Northwest Region river basins. The design of juvenile passage facilities for Little Goose Dam powerhouse and John Day Dam powerhouse continued in 1984. These facilities, structurally designed by the Corps, incorporate functional design criteria provided by fisheries agencies through a subcommittee on fish passage. The Bioengineering Group plays a prominent role on these types of committees.

The Bioengineering Group continues to work with other fisheries agencies in obtaining improvements in operation of adult fish passage facilities at the five Public Utility District (PUD) dams on the mid-Columbia. Review of past and current adult passage conditions at these PUD projects by Bioengineering personnel has resulted in development, in conjunction with other fisheries agencies, of more stringent passage criteria which the agencies are now requesting be carried out by the PUD's.

Planning of McNary Dam second powerhouse is continuing by the Corps of Engineers. The Bioengineering Group is providing agency input to the design of the adult collection facility and the juvenile bypass and collection facility.

The numerous smaller hydroelectric projects provide a large segment of the Bioengineering Group's workload. The engineers participated in the planning and design of fish passage and protective facilities for these projects. While adult passage facilities are needed at many of these projects, frequently the most difficult problem is to work with the developer to provide a juvenile fish protection system which will be effective and reliable yet not unnecessarily expensive.

The Group provides engineering review of hatchery facilities to be constructed under the CRFDP. This requires working with hatchery operating agencies' designers.

The Group receives several requests each year for assistance from agencies outside of the Northwest Region. In 1984, significant amounts of time were spent on review of fish passage plans at several dams in Michigan and Indiana. The Bioengineering Group's assistance on all of these projects was requested by

the U. S. Fish and Wildlife Service. A more complete list of FY 1984 activities is included as Appendix 17.

Research continues to be conducted at juvenile fish collector dams which is designed to measure areas of stress in the system and evaluate Submersible Traveling Screen efficiencies. Additional proposed facility modifications being developed and changes already incorporated, such as reduced holding and transportation densities, should further improve the transportation process. When flows such as recommended by Section 4(h) of the Northwest Power Act are implemented, fish will be moved through the reservoirs with less delay than in the past. Fish survival will be improved as the bypass systems and stream flows are perfected.

LITERATURE CITED

- Delarm, Michael R. and Einar Wold, June 1985. Columbia River Fisheries Development Program, Screening of Irrigation Diversions. NOAA Technical Memorandum NMFS F/NWR-12.
- Koski, Charles H., Stephen W. Pettit, James B. Athearn, and Alex L. Heindl. February 1985. Fish Transportation Oversight Team Annual Report - FY 1984. Transport Operations on the Snake and Columbia Rivers. NOAA Technical Memorandum NMFS F/NWR-11. 78 p.
- Vreeland, Robert R. February 1985. Evaluation of the Contribution of Chinook Salmon Reared at Columbia River Hatcheries to the Pacific Salmon Fisheries, Annual Report FY 1984. To the Bonneville Power Administration. Contract No. DE-AI79-84BP39638.
- Westgate, J.W., A.R. Hemmingsen, and J.F. Conrad. 1979. Hatchery Biology -Columbia River Fishery Development Program. Federal Aid Progress Report. Oregon Department of Fish and Wildlife, Fish Division. 18 p.
- Westgate, J.W., A.R. Hemmingsen, and J.F. Conrad. 1980. Hatchery Biology -Columbia River Fishery Development Program. Federal Aid Progress Report. Oregon Department of Fish and Wildlife, Fish Division. 32 p.
- Westgate, J.W., A.R. Hemmingsen, and J.F. Conrad. 1981. Hatchery Biology -Columbia River Fishery Development Program. Federal Aid Progress Report. Oregon Department of Fish and Wildlife, Fish Division. 43 p.
- Westgate, J.W., A.R. Hemmingsen, and R.A. Holt. 1982. Hatchery Biology -Columbia River Fishery Development Program. Federal Aid Progress Report. Oregon Department of Fish and Wildlife, Fish Division. 29 p.
- Westgate, J.W., A.R. Hemmingsen, and R.A. Holt. 1983. Hatchery Biology -Columbia River Fishery Development Program. Federal Aid Progress Report. Oregon Department of Fish and Wildlife, Fish Division. 33 p.

Appendix 1. -- The Mitchell Act as amended August 8, 1946

Mitchell Act

To provide for the conservation of the fishery resources of the Columbia River, establishment, operation, and maintenance of one or more stations in Oregon, Washington, and Idaho, and for the conduct of necessary investigations, surveys, stream improvements, and stocking operations for these purposes.

Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, That the Secretary of the Interior is authorized and directed to establish one or more salmon-cultural stations in the Columbia River Basin in each of the States of Oregon, Washington, and Idaho. Any sums appropriated for the purpose of establishment such stations may be expended, and such stations shall be established, operated, and maintained, in accordance with the provisions of the Act entitled "An Act to provide for a five-year construction and maintenance program for the United States Bureau of Fisheries", approved May 21, 1930, insofar as the provisions of such Act are not inconsistent with the provisions of this Act.

Sec. 2. The Secretary of the Interior is further authorized and directed (1) to conduct such investigations, and such engineering and biological surveys and experiments, as may be necessary to direct and facilitate conservation of the fishery resources of the Columbia River and its tributaries; (2) to construct and install devices in the Columbia River Basin for the improvement of feeding and spawning conditions for fish, for the protection of migratory fish from irrigation projects, and for facilitating free migration of fish over obstructions; and (3) to perform all other activities necessary for the conservation of fish in the Columbia River Basin in accordance with law.

Sec. 3. In carrying out the authorizations and duties imposed by section 2 of this Act, the Secretary of the Interior is authorized to utilize the facilities and services of the agencies of the States of Oregon, Washington, and Idaho responsible for the conservation of the fish and wildlife resources in such States, under the terms of agreements entered into between the United States and these States, without regard to the provisions of section 3709 of the Revised Statutes, and funds appropriated to carry out the purposes of this Act may be expended for the construction of facilities on and the improvement of lands not owned or controlled by the United States: Provided, That the appropriate agency of the State wherein such construction or improvement is to be carried on first shall have obtained without cost to the United States the necessary title to, interest therein, right-of-way over, or licenses covering the use of such lands.

Approved May 11, 1938, amended August 8, 1946 (52 Stat. 345) (60 Stat. 932) Appendix 2. -- List of Selected Publications by the Environmental and Technical Services Division Staff

TITLE YEAR A Hist. & Desc. Acct. of Pac. Coast Anad. Salmon. Rearing/Releases 1960-76 1979 A Production Economic Analysis of the Little White Salmon and Willard NFH 1976 Adult Coho Salmon Recoveries and Their Na+ -K+ ATPase Activity at Release 1982 Areal Distrib. of Marked Col. R. Sp. Chinook Recovered in Fish. & at Parent Hat. 1981 Bioeconomic Contrib. of Col. R. Hatchery Coho, 1965/1966 Broods 1973 Bioeconomic Contrib. of Col. R. Hatchery F. Chinook, 1961-1964 Broods 1977 Columbia River Fisheries Development Annual Report-F.Y. 1981 1982 Columbia River Fisheries Development Program 1981 Columbia River Fisheries Development Program Annual Report-F.Y. 1980 1981 Columbia River Fisheries Development Program Annual Report-F.Y. 1982 1983 Columbia River Fisheries Development Program Annual Report-F.Y. 1983 1984 Columbia River Fishery Program Circular 192 1964 Contribution of Columbia River Hatcheries to Harvest of Fall Chinook Salmon 1969 Contribution of Columbia River Hatcheries to Harvest of 1962 Brood F. Chinook 1970 Contribution of Columbia River Hatcheries to Harvest of 1963 Brood F. Chinook 1970 Contribution of Columbia River Hatcheries to Harvest of 1964 Brood F. Chinook 1972

Appendix 2. (continued)

.

.

•

•

TITLE
YEAR
Contribution of 1960-63 Brood Hatchery-Reared Sockeye to Col. R. Comm. Fishery 1978
Effect of Finclipping on Survival of Sockeye Salmon 1969
Effects of Ocean Fishing on 1961-Brood F. Chin. Salmon 1969
Establishment of Nonindigenous Runs of Sp. Chinook in Wind R. Drainage 1955-63 1981
Estimated Net Econ. Benefits to Visitors of Selected Col. R. Fish Hatcheries 1978
FTOT Annual Report-FY 1981 Transport Operations on the Snake and Columbia R. 1982
FTOT Annual Report-FY 1982 Transport Operations on the Snake and Columbia Rivers 1983
FTOT Annual Report-FY 1983 Transport Operations on the Snake and Columbia Rivers 1984
Homing and Fisheries Contrib. of Marked Coho at 2 Columbia River Locations
Homing Behavior & Contrib. to Col. R. Fish. of Marked Coho Released at 2 Loc. 1975
Impact of Artif. Prop. of Salmon on the Pac. Coast U.S. & Canada 1872-1979 1979
Improved Econ. Eval. of Comm. & Sport-Caught Salmon & Steelhead of the Col. R. 1976
Making Economic Information More Useful for Salmon & Steelhead Prod. Decisions 1984
Net Economic Values for Salmon & Steelhead from the Columbia River System 1982
Partial Net Economic Values for Salmon & Steelhead for the Col. River System 1975
Proceedings of The Thirty-Third Northwest Fish Culture Workshop 1982

Appendix 2. (continued)

TITLE	
YEAR	

Progress Report - Spring Chinook Salmon Transplantation Study 1955-61 1963

Recent Advances in Artif. Cult. of Salmon and Steelhead Trout of the Col. R. 1969

Releases of Anad. Salmon & Trout from U.S. & Can. Pac. Coast Rear. Fac. 1960-76 1981

Releases of Anadromous Salmon and Trout from Pac. Coast Rearing Fac. 1960-1973 1975

Subject & Author Index-Proceedings of the NW Fish Culture Conferences/Workshops 1982

Appendix 3 -- A brief description and history of Oregon Department of Fish and Wildlife Salmonid Rearing Facilities Funded by the Columbia River Fisheries Development Program.

Big Creek Hatchery Route 4, Box 594 Astoria, Oregon 97103

Dave Rieben, Manager - Telephone (503) 458-6512

Species	Pounds Reared Annually	Numbers Released Annually
Coho	49,335	740,000
Fall Chinook	71,250	5,800,000
Steelhead	15,000	90,000
Sea Run Cutthro	at 3,335	10,000

History

Big Creek Hatchery is located near Knappa, Oregon, approximately 20 miles upstream from Astoria.

Big Creek Hatchery is one of the four Oregon hatcheries that were remodeled and enlarged under the Columbia River Fishery Development Program. The refurbishing took place in 1957 at a cost of \$437,000.

The hatchery was remodeled to rear fall chinook and coho salmon. NMFS pays the main operation and maintenance costs. However, the Bureau of Reclamation contributes approximately \$20,600 each year for coho production in addition to the above.

Bonneville Hatchery P.O. Box 262 Bonneville, Oregon 97008

Trent Stickle, Manager - Telephone (503) 374-8393

Species	Pounds Reared Annually	Numbers Released Annually
Coho	133,335	1,000,000
Fall Chinook	87,500	7,000,000

History

Bonneville Hatchery is located downstream from Bonneville Dam.

The hatchery was remodeled and enlarged in 1957 at a cost of \$413,000. Prior to the enlargement, the hatchery was operated solely by the State of Oregon. In 1974 the station was once more enlarged by the Corps of Engineers to mitigate fish losses occasioned by construction of John Day Dam.

Total facilities now include 8 residences and 58 rearing ponds. Under present arrangements, the Corps finances 45 percent of the operations costs and the NMFS funds the remaining 55 percent.

The hatchery receives its rearing water from three sources: Tanner Creek, Mitchell Creek, and a series of wells that were drilled by the Corps of Engineers. The station presently rears coho and up-river bright and "tule" fall chinook salmon. Cascade Hatchery Star Route, Box 526 Bonneville, Oregon 97008

Wayne Stedronsky, Manager - Telephone (503) 374-8381

Expected Releases in 1985

Species	Pounds	Numbers
Coho	94,444	1,700,000

History

Cascade Salmon Hatchery is located on the Oregon shore approximately 1 mile upstream from Bonneville Dam.

The hatchery was constructed by the Federal Government in 1959 with funds provided by the Columbia River Fishery Development Program at a cost of \$683,000. The hatchery was constructed on U.S. Forest Service land under a Forest Service use permit.

The station has a gravity flow water supply from Eagle Creek.

The station was originally built with two residences and in 1963 a third one was added at a cost of 30,000. Cascade Hatchery rears principally coho in 30 ponds and a 16' x 80' raceway.

The O&M is funded totally by NMFS under a Cooperative Agreement with the Oregon Department of Fish and Wildlife.

Appendix 3 (continued)

Clackamas Hatchery 24500 S. Entrance Road Estacada, Oregon 97023

Dick Harrison, Manager - Telephone (503) 630-7210

Species	Pounds Reared Annually	Numbers Released Annually
Spring Chinook	37,500	300,000

History

Clackamas Hatchery was constructed in 1976 and is located near Estacada, Oregon. It is presently funded by three organizations. The Portland General Electric Company provides 25 percent of O&M funding for the production of 25,000 pounds of spring chinook for partial mitigation for its projects on the Clackamas River. The Oregon Department of Fish and Wildlife and NMFS share in the remainder of the funding obligations. Gnat Creek Hatchery Route 2, Box 2198 Clatskanie, Oregon 97016

R. L. Warren, Manager - Telephone (503) 455-2234

Species	Pounds Reared Annually	Numbers Released Annually
Steelhead	107,500	645,000

History

Gnat Creek Hatchery is located near the town of Westport, Oregon, approximately 22 miles upstream from Astoria.

The station was constructed in 1960 under the Columbia River Fishery Development Program at a cost of \$566,000. It was constructed to rear steelhead trout, but since the merging of Oregon Fish and Game Commissions, some salmon have been included in its program.

The hatchery has four residences and fifteen large rearing ponds, 16' x 100'.

The station has two water sources, Gnat Creek and an artesian well.

The O&M is funded totally by NMFS under a Cooperative Agreement with the Oregon Department of Fish and Wildlife.

The Trojan ponds are operated as a satellite installation to Gnat Creek Hatchery and are used primarily as acclimation ponds. Klaskanine Hatchery Route 2, Box 764 Astoria, Oregon 97103

Quentin Smith, Manager - Telephone (503) 325-3653

Species	Pounds Reared Annually	Numbers Released Annually
Coho	82,350	1,400,000
Fall Chinook	50,000	4,000,000
Steelhead	10,800	65,000

History

Klaskanine Hatchery is located about 8 miles southeast of Astoria.

The hatchery was enlarged in 1959 under the Columbia River Fishery Development Program at a cost of \$511,000. The original hatchery was operated by the Oregon Fish Commission.

The outside rearing facilities consist of sixteen 20' x 80' raceways, five concrete series raceways, and a $1\frac{1}{2}$ -acre rearing pond. The hatchery was originally constructed to rear steelhead and coho salmon but in recent years fall chinook have been added to the program. Very few fall chinook are able to return to the hatchery as at the time of entrance into the Klaskanine River, the water is too low for easy migration upstream.

The water supply for the hatchery comes from 3 intakes located on the North Fork of the Klaskanine and the Little North North Fork.

There are currently five residences at the hatchery.

The O&M is funded totally by NMFS under a Cooperative Agreement with the Oregon Department of Fish and Wildlife.

Oxbow Hatchery Star Route, Box 750 Cascade Locks, Oregon 97014 John Isley Manager - Telephone 374-8540

Species

Pounds Reared Annually

Numbers Released Annually

Coho

130,770

1,700,000

History

Oxbow Hatchery is located 1 mile east of Cascade Locks.

The hatchery was remodeled with Columbia River Fishery Development Program funds in 1952 at a cost of \$310,000. It is relatively a small station with four residences and twelve ponds operating in tandem, utilizing a spring water supply. The spring water runs approximately 45° and the station is used to start fish for both Bonneville and Cascade whose water temperatures sometimes are lower.

In 1977, two large rearing ponds were constructed under the Columbia River Fishery Development Program utilizing Herman Creek water at a cost of \$300,000.

Wahkeena Pond is located on the Columbia River, twenty miles east of Portland near Multnomah Falls. It was constructed in 1963 under the Columbia River Fishery Development Program at a cost of \$51,000. The pond is presently being operated as a satellite facility to Oxbow Hatchery.

The O&M is funded totally by NMFS under a Cooperative Agreement with the Oregon Department of Fish and Wildlife.

Appendix 3 (continued)

Sandy Hatchery 39800 S.E. Fish Hatchery Road Sandy, Oregon 97055

Dick Whitlatch, Manager - Telephone (503) 668-4222

Species	Pounds Reared	Annually	Numbers	Reared	Annually

Coho

55,555

1,000,000

History

The Sandy River Hatchery is located approximately two miles northeast of the town of Sandy on Cedar Creek, a tributary to the Sandy River.

The station was constructed in 1959 under the Columbia River Fishery Development Program at a cost of \$333,000. It has twenty circulating ponds and four residences. The upstairs of the hatchery building has been converted into a laboratory and the Oregon Department of Fish and Wildlife utilize this space as a nutrition research station.

The water supply for the station comes from Cedar Creek and its quantity in the summer at times is critical. Sandy Hatchery is primarily a coho station. However, it has intermittently reared some fall chinook.

The O&M is funded totally by NMFS under a Cooperative Agreement with Oregon Department of Fish and Wildlife.

Appendix 3 (continued)

Aumsville/Stayton Pond 43182 North River Drive Sweethome, Oregon 97386

Gene Middaugh, Manager - Telephone (503) 367-3437

Species	Pounds	Reared	Annually	Numbers	Reared	Annually

Fall chinook

87,500

7,000,000

History

The Aumsville Pond was developed to provide a rearing facility for the Willamette River fall chinook program.

The O&M is funded totally by NMFS under a Cooperative Agreement with Oregon Department of Fish and Wildlife.

Appendix 4 -- A brief description of Washington Department of Game Salmonid Rearing Facilities funded by the Columbia River Fisheries Development Program.

Beaver Creek Hatchery 28 Beaver Creek Road Cathlamet, Washington 98612

Stanley Woody, Manager - Telephone 206-795-3620

Species	Pounds Reared Annually	Numbers	Released Annually
Steelhead	80,000	,	457,000
Cutthroat	9,000		33,000

History

Beaver Creek Hatchery is located on the Elokomin River approximately 2 miles from its confluence with the Columbia River at Cathlamet, Washington. It is primarily a winter steelhead and searun cutthroat rearing station constructed in 1958 by the Columbia River Fishery Development Program at a cost of \$663,000.

The hatchery is composed of $10-4' \times 30'$ raceways, $20-80' \times 10'$ raceways, 2 100' x 12' raceways, and rearing pond. The hatchery receives its water from three sources, the Elokomin River, Beaver Creek, and it also utilizes well water for incubation of eggs within the hatchery building

There are four residences at the hatchery.

Appendix 4 (continued)

Ringold Springs Rearing Pond Star Route, Box 188 Meda, Washington 99343

Bruce Walters, Manager - Telephone 509-269-4327

Species	Pounds Reared	Annually	Numbers	Released	Annually
Steelhead	25,000			146,000	

History

The Ringold Springs Rearing Pond is located on the Columbia River 20 miles upstream from Pasco, Washington. It was constructed as experimental facilities in 1963 under the Columbia River Fishery Development Program at a cost of \$80,000.

The facility (5-acre pond) is operated by the Washington Department of Game. There is one residence at the facility.

The pond receives water from springs that emerge from the adjacent hillside. These springs are irrigation return water that appeared following the creation of Banks Lake irrigation system.

The Ringold Springs water is not suitable for the incubation of eggs. Water temperatures are around 50 degrees the year around but even when water is chilled there is a low survival rate. The reasons for the high mortalities are attributed to phosphate introduced by fertilizers.

<u>Skamania Hatchery</u> MPO 39L Washougal, Washington 98671

Vince Janson, Manager - Telephone 206-837-3131

Species	Pounds Reared Annually	Numbers Released Annually
Steelhead	98,000	588,000

History

The Skamania Hatchery is located on the North Fork of the Washougal River, approximately 12 miles northeast of the town of Washougal, Washington. The station rears spring summer and winter-run steelhead and was constructed in 1957 by the Columbia River Fishery Development Program at a cost of \$458,000.

The station has 32 80' x 10' raceways and 10 4' x 30' raceways. The main water supply for the station is from the North Fork of the Washougal River. The five residences receive their domestic water from a well. Because of the cold water temperatures in the winter, eggs are usually transferred from the station after stripping in January and February to the Vancouver Hatchery. The fry are returned to the station when the water is warming in June and the fish are reared to smolt size for release. There are five residences at the facility.

Appendix 5 -- A brief description and history of Washington Department of Fisheries salmonid rearing facilities funded by the Columbia River Fisheries Development Program

Elokomin Hatchery 1318 State Highway 407 Cathlamet, Washington 98612

Roy Pigott, Manager - Telephone 206-795-3608

Species	Pounds Reared Annually	Numbers Released Annual	13
Coho	106,000	1 700 000	
Fall Chinack	32,000	1,700,000	
Fall Chinook	32,000	2,500,000	

History

Elokomin Hatchery is located approximately 6 miles northeast of Cathlamet, Washington, on the Elokomin River. The station was constructed in 1954 under the Columbia River Fishery Development Program at a cost of \$566,000.

In 1958 the first dirt pond was constructed at a cost of \$10,000 and in 1976 the second horseshoe-shaped dirt pond was placed in operation at a cost of \$160,000.

The hatchery has four residences with a domestic water supply from a well. The hatchery receives its water from three separate sources: Elokomin River, Clear Creek, and an un-named intermittent spring.

The hatchery has 20 concrete raceways, $20' \times 80'$, and two large dirt rearing ponds. The station rears principally coho and fall chinook.

Grays River Hatchery P.O. Box 768 Grays River, Washington 98621

Don Rapelje, Manager - Telephone 206-465-2446

Species	Pounds Reared Annually	Numbers Released Annually
Fall Chinook	17,500	1,750,000
Coho	20,000	400,000

History

Grays River Hatchery is located approximately three miles northeast of the town of Grays River on the West Fork of the Grays River, about 20 miles upstream from the mouth of the Columbia River. This station was the last formal hatchery constructed under the Columbia River Fishery Development Program and was completed in 1961 at a cost of \$666,000.

It has three residences, ten formal concrete rearing ponds, $20' \times 78'$ and one large earth rearing pond, $60' \times 200'$. The two adult holding ponds, $40' \times 60'$, are also used for rearing.

The hatchery receives the majority of its water from the West Fork of the Grays River. However, some hatchery water is obtained from infiltration pump systems located on the hatchery grounds.

Weyco Pond is a 5-acre pond constructed by the Weyerhaeuser Lumber Company and is operated as a satellite rearing facility to the Grays River Hatchery. It is located on the upper watershed of Grays River. Columbia River Fishery Development Program funds are used to help pay for food.

The principal species reared in this pond has been fall chinook, as water flows and temperatures preclude the rearing of yearling coho. Washington Department of Fisheries Enhancement Program includes an additional water supply for this pond.

Kalama Falls Hatchery Box 3900, Kalama River Road Kalama, Washington 98625

Bob Ready, Manager - Telephone 206-673-4825

Species	Pounds Reared Annuall	Y	Numbers	Released	Annually
Coho	71,250			1,425,000)
Spring Chinook	50,000			500,000)
Fall Chinook	75,000			7,500,000)

History

Kalama Falls Hatchery is approximately ten miles upstream from the mouth of the Kalama River. The station was constructed in 1959 at a cost of \$928,000.

The station has five residences, twelve concrete ponds, 20' x 77', and six dual-purpose adult juvenile ponds, 40' x 50'.

The station rears spring chinook, fall chinook, and coho salmon.

The station's water supply is totally by pump from the Kalama River. Standby generation is provided in case of a power failure.

Lower Kalama Hatchery is presently operated as a satellite to Kalama Falls Hatchery.

Klickitat Hatchery Route 2, Box 90 Glenwood, Washington 98619-9607

Doug Loucks, Manager - Telephone 509-364-3310

Species	Pounds Reared Annual	ly	Numbers	Released	Annually
Coho	87,500			1,400,000	
Spring Chinook	112,500			900,000	5 · · · · · · · · · · · · · · · · · · ·
Fall Chinook	40,000	ŕ		4,000,000	i.

History

Klickitat Hatchery is located approximately 35 miles upstream from the mouth of the Klickitat River, east of the town of Glenwood, Washington. The station was the first hatchery constructed under the Columbia River Fishery Development Program at a cost of \$650,000.

The hatchery consists of five residences, thirty 20' x 80' concrete ponds, two earthen ponds, and two lined ponds.

The Klickitat station rears fall and spring chinook and coho salmon. Some difficulty has been experienced in obtaining enough adult fish to supply the hatchery with an adequate number of eggs to fulfill rearing schedules. A major falls was laddered under the Columbia River Fishery Development Program to provide access to the hatchery. Native runs of fish in the Klickitat consisted of spring chinook and steelhead as other species were blocked by the falls. The hatchery is one of the most remote stations in the Columbia system.

Washougal Hatchery Route 2, Box 443 Washougal, Washington 98671

Richard Johnson, Manager - Telephone 509-837-3311

Species	Pounds Reared Annually	Numbers Released Annually
Fall Chinook	60,000	6,000,000
Coho	200,000	4,000,000

History

Washougal Hatchery is located 14 miles northeast of Washougal, Washington. The station was constructed in 1958 with funds provided by the Columbia River Fishery Development Program at a cost of \$1,025,000.

The station has four residences, 24 concrete ponds of various sizes, two dirt ponds, and one large rearing lagoon. The hatchery receives its rearing water from four separate sources: Bob's Creek, Boyles Creek, C Creek, and the Washougal River. The station uses a unique pumping system to take water from the river. It employs the Bob's Creek water with approximately 100 feet of head to drive turbine pumps with intakes in the river.

Appendix 5 (continued)

Ringold Springs Rearing Pond HC-01, Box 189 Meda, Washington 99343

Frank Anderson, Manager - Telephone 509-269-4448

Species	Pounds Released Annually	Numbers Released Annually
Spring Chinook	125,000	1,000,000

History

The Ringold Springs Rearing Pond is located on the Columbia River 20 miles upstream from Pasco, Washington. It was constructed as experimental facilities in 1963 under the Columbia River Fishery Development Program at a cost of \$80,000.

The facility (a 9-acre pond and 14 rearing ponds) is operated by the Washington Department of Fisheries.

The pond receives water from springs that emerge from the adjacent hillside. These springs are irrigation return water that appeared following the creation of Banks Lake irrigation system.

The Ringold Springs water is not suitable for the incubation of eggs. Water temperatures are around 50 degrees the year round but even when water is chilled there is a low survival rate. The reasons for the high mortalities are attributed to phosphate introduced by fertilizers.

The O&M is funded totally by NMFS under a Cooperative Agreement with the Washington Department of Fisheries.

A22

Appendix 6 -- A brief description and history of U.S. Fish and Wildlife Service salmonid rearing facilities funded by the Columbia River Fisheries Development Program.

Abernathy Hatchery Abernathy Salmon Cultural Techniques Center 1440 Abernathy Road Longview, Washington 98632

Dave Leith, Director - Telephone (206) 425-6072

SpeciesPounds Reared AnnuallyNumbers Released AnnuallyFall Chinook42,0001,500,000

History

Abernathy Hatchery is located 14 miles downriver from Longview and is approximately five miles from the confluence of Abernathy Creek and the Columbia River. It was constructed in 1960 at a cost of \$389,000. All construction was funded by NMFS. NMFS funds only about 40 percent of the operational costs, FWS 60 percent.

The Abernathy Hatchery is principally a research and development center for hatchery practices, including nutritional studies. Only about half of the station is dedicated to standard fish production. Most of the research and development has been confined to fall chinook although some coho investigations have been undertaken.

The station consists of three residences and 12 rearing ponds, 6 of which utilize reuse water systems. The 6 ponds not on the reuse system utilize Abernathy Creek water. The reuse system is operated utilizing well water.

The Abernathy research lab contains numerous rearing tanks which also utilize well water. The hatchery employs a unique electric weir to guide the adult fish to the spawning pond.

The Fish and Wildlife Service and NMFS share in the funding of studies and fish production.

Appendix 6 (continued)

Carson Hatchery Carson, Washington 98610

Don Zirjacks, Manager - Telephone (509) 427-5905

SpeciesPounds Reared AnnuallyNumbers Released AnnuallySpring Chinook133,5002,670,000

History

Carson Hatchery is located about 13 miles northwest of Carson, Washington, on the Wind River. It was remodeled and changed from trout to a salmon hatchery in 1956 at a cost of \$477,000. NMFS funded the remodeling.

The station consists of 46 8' x 80' concrete raceways and two large dirt rearing ponds. These dirt ponds were added in 1977 with funds provided by NMFS.

The water supply for the hatchery is principally the Tyee Springs which has a constant temperature of about 46 degrees. River water is mixed with Tyee Springs water to obtain higher temperatures during the summer period. This warmer water is used effectively to ripen adult spring chinook which are spawned usually in late August.

The funds for operating Carson are supplied by NMFS, with cyclic maintenance funds provided by the Fish and Wildlife Service.

Eagle Creek Hatchery Route 1, Box 610 Estacada, Oregon 97023

Jamieson E. Holway, Manager - Telephone (503) 630-6270

Species	Pounds Reared Annually	Numbers	Released	Annually
Spring Chinook	35,000		400,000	
Coho	72,000		1,000,000	
Steelhead	15,500		100,000	

History

Eagle Creek Hatchery is located approximately 7 miles from Estacada, Oregon on Eagle Creek which is a tributary to the Clackamas River. The station was constructed under the Columbia River Fishery Development Program in 1956 at a cost of \$474,000. In 1963, 36 additional ponds were added with CRFDP funds.

The station has three duplex residences, housing six families. The station rears spring chinook, coho and steelhead.

The station's water supply comes from Eagle Creek and is inadequate to run all of the ponds during the low flow period in the summer and early fall. Both banks of raceways are located in tandem and reuse the water three times.

The funds for operating Eagle Creek Hatchery are supplied by NMFS, with cyclic maintenance funds provided by the Fish and Wildlife Service.

Little White Salmon Hatchery (Willard National Fish Hatchery) P.O. Box 17 Cook, Washington 98605

Jack E. Bodle, Manager - Telephone (509) 538-2755

Species	Pounds Reared Annually		Numbers	Released	Annually
Fall Chinook	176,000	i	8,700,000		
Spring Chinook	35,000			1,200,000	

History

Little White Salmon Hatchery is located at the mouth of the Little White Salmon River approximately 20 miles upstream from Bonneville Dam. This station is one of the oldest hatcheries on the river, and has been remodeled several times. The latest rehabilitation occurred in 1958 under the Columbia River Fishery Development Program at a cost of \$612,000.

In addition to being one of the oldest hatcheries on the river, it is also one of the largest. The hatchery is composed of a series of 49 rearing ponds. These ponds vary in size and shape depending on the topography of the land.

The station receives its primary water from the Little White Salmon River and Bailey Springs. The station also utilizes water from a series of intermittent springs during the winter rearing period when Little White Salmon River water is quite cold.

There are four residences at the Little White Salmon Station.

The funds for operating Little White Salmon Hatchery are supplied by NMFS, with cyclic maintenance funds provided by the Fish and Wildlife Service.
Appendix 6 (continued)

Willard National Fish Hatchery Star Route Cook, Washington 98605

Species

Pounds Reared Annually

Numbers Released Annually

Coho

166,000

2,500,000

History

The Willard National Fish Hatchery is located on the Little White Salmon River at Willard, Washington. Willard is supervised by the management of Little White Salmon Hatchery. It is a coho rearing station constructed in 1954 with funds from the Columbia River Fishery Development Program at a cost of \$640,000.

The station was originally constructed to rear both fall chinook and coho; however, cold water temperatures prohibit effective rearing of zero-year migrant fall chinook.

The station receives its main rearing water from the Little White Salmon River and a groundwater well. Willard takes no eggs as a natural barrier blocks all fish downstream from the station. Returning adults are collected at Little White Salmon Hatchery and the eggs are taken to Willard for incubation and rearing.

The station has 50 8' x 80' raceways and 12 residences.

The funds for operating Willard Hatchery are supplied by NMFS, with cyclic maintenance funds provided by the Fish and Wildlife Service.

Appendix 6 (continued)

Spring Creek Hatchery Underwood, Washington 98651

Ed LaMotte, Manager - Telephone (509) 493-1730

Species	Pounds Reared Annually	Numbers Released Annually
Dell Chinesh	162,000	15 000 000
Fall Chinook	162,000	15,000,000

History

Spring Creek Hatchery is located approximately 30 miles above Bonneville Dam at Underwood, Washington. The original station was one of the older hatcheries on the river. However, it was remodeled in 1955 by the Columbia River Fishery Development Program at a cost of \$492,000. It was nearly completely razed and remodeled again by the Corps of Engineers in 1970 at a cost of approximately \$8,000,000.

The station features a 90 percent reuse system with 44 circulating rectangular Abernathy ponds with rock and oyster shell filters as an integral part of the reuse facilities. The water source is a series of springs that emerge from the base of the cliff adjacent to the hatchery.

Two satellite ponds on the Big White Salmon River are operated by the Spring Creek staff.

Funding is approximately 50 percent NMFS and 50 percent Corps of Engineers. The Corps funding is for the mitigation of losses occurred at John Day Dam. This station is probably the most successful fall chinook station on the Columbia River.

		Fall C	hinook	Sp Chi	nook	Chun	3	2	Steel	beed	Cutthroat	Tota	
Facility	Year	No.	Pounds	No.	Pounds	No. Pounds	No.	Pounds	No.	Pounds	No Pounde	2	Dounde
Abernathy	1980	2,156,095	30,192									2.156.095	30.192
	1981	1,201,432	33,623									1 201 432	23 672
	1982	1,456,407	28,380									1 455 407	C30400
	1983	1,557,504	48,735									104,004,1	085 87
	1984	2.247.786	45.231									1,557,504	48,735
5 Year A	arano.	1 773 846										2,247,786	45,231
	Acroge	C40°C7/°I										1,723,845	37,232
Carson	1980			3,261,200	123,165		777,300	38,961				A. 038, 500	162 126
	1981			2,880,912	130,748		405.736	20.086				2 386 648	150 031
	1982			2,677,640	143,365							2 677 6MD	700 0CI
	1983			3,992,280	93,986							3.992.280	ARP FP
	1984			3,418,635	188,103							3 418 636	
5 Year Av	verage			3,246,133	135,873		236,607	11,809				3,482,740	147,682
Eagle Creek	1980			574.257	28.890		1 600 472	110 010					
	1981			1 292 977	20 754		71460061	6106011	CK0 6005	14,549		2,662,624	153,456
	1982			12562576	47 BEL		110,146	68,619	310,248	20,884		2,544,181	158,757
	1983			170 COC	4C0 ⁴ /4		932,686	59,228	247,796	14,391		1,770,106	121,473
	1001			/86,233	72,723		573,512	45,736	113,328	16,927		1,473,073	135,306
	1384			454°570	55,768		156,951	10,121	418,426	12,70M		1,029,947	78,673
5 Year Av	erage	739,521	54,898				860,726	58,745	295,739	15,907		1,895,986	129,550
Little White	1980	9,772,895	91,871	510,802	23,778		3,413,577	171,601				13.697.274	287.250
	1981	10,436,242	107,073	745,680	39,735		2,790,185	145,680				13.972.107	292.488
complex	1982	8,091,829	86,922	794,203	35,183		2,519,871	115,318				11.405.903	FC4.7FC
	1983	9,500,331	105,078	3,898,578	59,225		3,423,094	171,790				16.822.003	336.093
	1984	7,778,794	95,749	787 _a 215	28,211		2,566,594	157,655				11.132.603	281 615
5 Year Av	erage	9,116,018	97,339	1,347,296	37,226		2,942,664	152,409				13,405,978	286,974

Appendix Table 7. -- Numbers and Pounds of Juvenile Salmonids Released from Columbia River Fisheries Development Program Funded Hatcheries Operated by the U.S. Fish and Wildlife Service

Appendix Table 7. -- (continued)

		Fall Ch	ninook	Sp Chi	inook	Chu	E	3	0	Steell	head	Cutt	throat	Total	
acility	Year	No.	Pounds	No.	Pounds	No.	Pounds	No.	Pounds	No.	Pounds	No.	Pounds	No.	Pounds
pring Creek	1980	18,017,998	266,733											18,017,998	266,733
	1981	16,688,525	229,144											16,689,525	229,144
	1982	10,739,060	113,372											10,739,060	113,372
	1983	23,611,036	264,234											23,611,036	264 ,234
	1984	16,594,816	212,784											16,594,816	212,784
5 Year A	lverage	17,130,487	217,253											17,130,487	217,253

		Fall C	h i nook	Sp Chi	inook	Chun		8	٤	Steel	head	Cutth	roat	Tota	-
Facility	Year	No.	Pounds	No.	Pounds	No.	Pounds	No.	Pounds	No.	Pounds	No.	Pounds	No.	Pounds
Aumsville-	1980	6,346,989	72,990											6.346.989	72.990
Stayton Pond	1981	5,908,700	79,210											5,908,700	79.210
	1982	6,731,246	76,866											6.731.246	76.866
	1983	6,912,114	87,581											6.912.114	87.581
	1984	5 ₂ 170 ₂ 802	89,456											5.170.802	954.68
5 Year	Average	6,213,970	81,221											6,213,970	31,221
Big Creek	1980	6,433,919	86,698					730,345	39,166	190,121	10,149	1,324	78	7,355,709	136,091
	1981	6,147,934	83,883			44,464	123	601,103	30,556	83,716	13,668	5,302	482	6,882,519	128,712
	1982	6,175,275	82,337			33,836	26	841,500	47,801	256,603	10,848	4,401	677	7,311,615	141,689
	1983	5,889,942	91,865			80,979	118	1,054,857	51,567	109,558	11,045	5,626	893	7,140,962	155,488
	1984	6,088,937	84,823			69,365	194	788,767	63,947	62,286	11,086	5,724	1,967	7,015,081	162.017
5 Year	Average	6,147,201	85,922			45,729	92	803,314	46,607	140,457	11,359	4,475	819	7,141,177	144,799
Bonneville	1980	13,520,367	281,188					3,470,997	124,651					16,991,364	405,839
	1981	11,418,405	210,475					2,635,987	178,277					14,054,392	386,752
	1982	12,555,513	193,714					3,719,904	140,496					16,275,417	334,210
	1983	9,292,351	173,391					1,802,207	118,794					11,094,558	292,185
	1984	12,887,142	287,271					461 a521	38,843					13,348,663	326,114
5 Year /	Average	11,934,756	229,208					2,418,123	120,212					14,352,879	349,420
Cascade	1980	561 033	16 694												
			170601					516,307	22,014					1,067,340	36,268
	1961							2,983,497	28,143					2,963,497	28,143
	1982							215,999	12,204					215,999	12,204
	1983							4,278,253	60,882	57,570	8,582			4,335,823	494 69
	1984							1,578,506	122,048					1,578,506	122,048
5 Year /	lverage	110,207	3,251					1,914,512	49,058	11,514	1,716			2,036,233	54,025

Appendix Table 8. -- Numbers and Pounds of Juvenile Salmonids Rejeased from Columbia River Fisheries Development Program Funded Hatcheries Operated by the Oregon Department of Fish and Wildlife from 1980 - 1984.

		Fall Ch	ninook	Sp Chir	nook	Chum		9	01	Steelt	head	Cutthroa		Total	
acility	Year	No.	Pounds	No.	Pounds	No.	Pounds	No.	Pounds	No.	Pounds	No. Pou	nds No		Pounds
lackamas	1980			1,054,859	127,818								1,054,	,859 1	27,818
	1981			998,780	103,496								966	,780 1	03,496
	1982			1,123,411	167,183								1,123,	1 114.	67,183
	1983			992,408	189,982								992,	408 1	89,982
	1984			921,743	125,785								921,	743 1	25,785
5 Year	Average			1,018,240	142,853								1,018,	,240 1	\$2,853
											000 00		000	E De	0.0
Cnat Creek	1980									609,508	89,820		609	90C	82,820
	1981									581,617	95,810		581,	,617	95,810
	1982									434,722	81,663		434	,722	81,663
	1983							217,097	673	650,465	86,725		1441	,240	87,398
	1984									632,971	102,649		632,	1 1/6,	02,649
5 Year	Average							158,155	135	581,857	91,333		740	,012	91,468
Klaskanine	1980	3,554,908	666' 11			755,210	1,478	1,410,045	82,459	50,894	8,928		5,771	,057 1	37,864
	1981	3,943,444	45,854					1,475,277	85,792	57,695	617 ₄ 6		5,476	,416	41,425
	1982	3,307,775	38,915					2,104,932	82,735	38,863	6,587		5,451	\$70	28,237
	1983	3,511,519	48,103					1,814,124	87,617	69,828	13,175		5,395	1244	48,895
	1984	4,077,845	50,257					1,264,234	131,691	72,681	14,251		5,414	a760	96,199
5 Year	Average	3,679,098	45,626					1,613,722	94,059	57,992	10,544		5,501	854	50,524
Oxhow/Wahkee	1980	2.110.325	20.923	414.488	49.822								2,524	,613	70,745
	1981	3,321,769	30,925					3,263,588	45,839				6,585	,357	76,764
	1982	344,759	46,780	460,741	49,015								805	,500	95,795
	1983	1,799,192	17,403					499,511	418				2,298	1,703	17,821
	1984	150,960	1,020					5,529,586	234,819				5,680	3,546	235,839
5 Year	Average	1,545,401	23,410	175,045	19,767			1,858,537	56,216				3,578	3,963	99,393

Appendix Table 8. (continued)

	(panu
	ntir
	00)
	8
1	ø
	de l
	×
-	pendi
	0

	Pounds	66,061	64,872	56,102	65,094	61,185	62,663
Total	No.	1,188,865	3,383,670	1,026,848	2,760,129	1,053,067	1,882,516
throat	Pounds						
Cut	No.						
Ihead	Pounds						
Stee	No.						
81	Pounds	66,061	64,872	56,102	65,094	61,185	62,663
19	No.	1,188,865	3,383,670	1,026,848	2,760,129	1,053,067	1,882,516
51	Pounds						
ମ	No.						
inook	Pounds						
Sp Q	No.						
Chinook	Pounds						
Fall	No.						
	Year	1980	1981	1982	1983	1984	Average
	Facility	Sandy					5 Year

Appendix Table 9. -- Numbers and Pounds of Juvenile Salmonids Released from Columbia River Fisheries Development Program Funded Hatcheries Operated by the Washington Department of Fisheries from 1980 - 1984.

Total	18701	No. Pounds	76,817	5,794 73,527	1,348 44,366	,500 35.722	.900 \$2.277	542 54 ²	.323 216.985	.619 174.752	,410 170,676	,500 172,321	-800 179 029-	,730 182,753	,953 99,317	,697 132,421	.702 117.674	,600 148,954	.600 153.389	,110 130,351	101 200	F01, CEI CE0,	935 204 ARS	103 243 790	R67 256 783	01 50C2 2005
		15	\$ °00	4,24	1,33	2,12	2.026	2,746	6,825	6,836	5,464	5,534	5.807	6,093	199,1	5,594	6,321	4,563	4.832	5,862		13 000	10.090	10.769	946.9	1967
Cutthroat		No. Pound																								
Ihead		Founds																								
Ster		NO.																								
2		rounds	63,777	59,231	34,871	20,246	22,533	40,132	167,357	146,030	138,175	145,395	148,262	153,044	18,583	20,007	17,895	34,778	43,262	26,905	134.416	184,814	155,875	172,079	178,255	
3	-	.01	2,650,280	3,026,035	505,998	621,600	405,600	1,441,902	4,414,192	3,911,613	2,864,256	2,976,500	3,038,800	3,441,072	2,567,148	\$25,800	1,349,814	2,062,800	662,000	1,413,512	3.346.701	6,622,907	3,303,820	4,053,803	3,400,200	
	Pounde	-			•																					
Chun	No																									
look	Pounds														31,151	33,974	16,000	16,286	32,590	26,000						
Sp Chir	No.														413,406	1,099,800	160,000	228,000	325,900	445,421						
inook	Pounds		13,040	14,296	9°495	15,476	19,744	14,410	29,628	28,722	32,501	29,926	30,767	29,709	49,583	78,440	83,779	97,890	77,537	77,446	61,368	606'06	48,610	71,211	78,528	
Fall Ch	No.		1,351,890	1,220,759	826,350	1,503,900	1,621,300	1,304,840	2,411,131	2,925,006	2,600,154	2,558,000	2,769,000	2,652,658	5,017,399	4,069,097	4,811,888	2,272,800	3,844,700	4,003,177	6,122,198	6,467,138	6,787,115	6,715,300	5,846,662	
	Year	0001	0961	1981	1982	1983	1984	verage	1980	1981	1982	1983	1984	verage	1980	1981	1982	1983	1984	verage	1980	1981	1982	1983	1984	
	Facility		ULAYS KIVEL					5 Year A	Elokomin		-			5 Year A	Kalama Falls					5 Year A	Washougal					

(continued)	
9.	
Table	
Appendix	

		Fall C	h i nook	Sp Chil	nook	ŝ	5	6	91	Stee	head	Cut	throat	Total	
Facility	Year	No.	Pounds	No.	Pounds	No.	Pounds	No.	Pounds	No.	Pounds	No.	Pounds	No.	Pounds
Klickitat	1980	3,139,434	36,935	2,067,592	63,766			1,431,093	85,473					6,638,119	186,174
	1981	2,479,132	31,784	1,950,702	85,212			1,333,976	63,887					5,763,810	180,883
	1982	3,679,620	44,333	1,759,802	78,665			1,653,687	105,837					7,093,109	228,835
	1983	4,864,600	54,658	1,354,800	117,900			1,456,910	97,051					7,676,310	269,609
	1984	1,195,800	16,843	1,846,500	57,061			1,339,300	70,489					4,381,600	144,393
5 Year	Average	3,071,717	36,911	1,795,880	80,521			1,442,993	84,547					6,310,590	201,979
Ringold	1980	943,800	35,100	350,000	50,000									1,293,800	85,100
Salmon	1981			750,000	75,000									750,000	75,000
	1982	788,000	105,067	000'006	36,000									1,688,000	141,067
	1983														
	1984	2,100,000	38,200	950,000	135,700									3,050,000	173,900
4 Year	Average	957,950	44,592	737,500	74,175									1,695,450	118,767

		Fall	Chinook	SP CF	inook	5	5	01	oho	Steel	head	Cutt	hroat	Total	
Facility	Year	No.	Pounds	No.	Pounds	No.	Pounds	No.	Pounds	No.	Pounds	No.	Pounds	No.	Pounds
Beaver Creek	1980									990,512	96,922	96,708	8,720	1,087,220	105,642
	1981									141, 205	107,290	66,050	14,840	175,791	122,130
	1982									751,801	108,902	60,160	13,700	811,961	122,602
	1983									532,876	83,670	78,765	7,835	611,641	91,505
	1984									700,164	100,375	43,210	12,300	743,374	112,675
5 Year A	verage									737,019	99,432	68,979	11,479	805,998	110,911
Skamania	1980									1,078,534	104,550			1,078,534	104,550
	1981									742,765	119,860			742,765	119,860
	1982									560,616	70,880			560,616	70,880
	1983									737,687	71,370	10,860	30	748,547	71,400
-	1984									943,044	660'06	22,903	6,882	965,947	96,981
5 Year A	verage									812,529	91,352	6,753	1,382	819,282	92,734
Ringold	1980									187 a000	26,666			187,000	26,666
	1981									194,759	26,384			194,759	26,384
	1982									189,000	28,636			189,000	28,636
	1983									146,000	22,813			146,000	22,813
	1984									201,008	29,560			201,008	29,560
5 Year A	verage									183,553	26,812			183,553	26,812
Alder Creek	1080														
Pond	1981									83,1 24	c+c, 11			83,124	11,545
	1982									76,650	15,930			79,650	15,930
	1983														
	1984														
2 Year A	verage									81,387	13,738			81,387	13,738

Appendix Table 10. -- Numbers and Pounds of Juvenile Salmonids Released from Columbia River Fisheries Development Program Funded Hatcheries Operated by the Washington Department of Game from 1980 - 1984.

		Fall Chinook		So Chino	4	4		c							
Facility	Year	No. Pound	1		Dounde		Double	1	000	Steel	head	Cutthr	roat	Total	
Vancouver Poo	1 1 980		2		LOUIDS	.00	Lounds	No.	Pounds	No.	Pounds	No. F	Pounds	No.	Pounds
	1981														
	1962														
	1983									0/1.40	0/6"5			54,170	9,970
										81,761	16,451			81,761	16,451
	1984									124,428	24,265			124,428	24,265
3 Year A	verage									86,786	16,895			86,786	16,895
Gobar Pond	1980														
	1961														
	1982									129,534	22,725			129.534	22.725
-	1983									138,654	28,540			138.654	28.540
	1984									120.240	23.676			120 240	222 55
3 Year A	rer age									129 476	74 000			0476071	0/0507
										0/4671	006 47			129,476	24,980
Tucannon	1980														
	1981														
	1982									682,360	13.918			682 360	13 918
	1983									•					
	1984														
<	erage									682,360	13,918			682,360	13,918
Coweeman	1980										ý.				
South Toutle	1981														
	1982														
	1983														
	1984									32,900	4,872			32.900	4.872
A.	erage									32,900	4,872			32,900	4,872

Appendix Table 10. (continued)

Appendix Table 11. -- Adult and Jack Salmonids Returning to Columbia River Fisheries Development Program Funded Hatcheries Operated by the U.S. Fish and Wildlife Service in 1984

	Fall Chi	nook						
	JRB	Tules	Sp Chinook	Coho	Steelhead	Cutthroat	Chum	Total
Abernathy		742						742
Carson			2,153					2,153
Eagle Creek			1,032	2,405	1,431			4,868
Little White Salmon/ Willard Complex Spring Creek		809 9,507	577	7,063				8,449 9,507
TOTAL		11,058	3,762	9,468	1,431			25,719
					r			

Appendix Table 12. -- Adult and Jack Salmonids Returning to Columbia River Fisheries Development Program Funded Hatcheries Operated by the Oregon Department of Fish and Wildlife in 1984

	Fall Ch	inook						
	URB	Tules	Sp Chinook	Coho	Steelhead	Cutthroat	Chum	Total
Big Creek		6,593		6,123	695	199	42	13,652
Bonneville	3,253	5,478		14,751				23,482
Cascade		297		628				925
Clackamas			2,521					2,521
Klaskanine		37		9,004			50	9,091
Sandy				12,569				12,569
TOTAL	3,253	12,405	2,521	43,075	695	199	92	62,240
	4. 4.		-					

Note: Aumsville/Stayton Pond, Gnat Creek, and Oxbow do not have any adult collection

Appendix Table 13. -- Adult and Jack Salmonids Returning to Columbia River Fisheries Development Program Funded Hatcheries Operated by the Washington Department of Fisheries in 1984

	Fall Chi	nook						
	URB	Tules	Sp Chinook	Coho	Steelhead	Cutthroat	Chum	Total
Elokomin		1,714		4,328				6,042
Grays River		237		2,773				3,010
Lower Kalama	1	1,378		555				1,934
Kalama Falls	484	3,907	807	2,342				7,540
Washougal		2,116		15,262				17,378
Klickitat		146	718	40				904
TOTAL	485	9,498	1,525	25,300	· ,			36,808

Appendix Table 14. -- Adult and Jack Salmonids Returning to Columbia River Fisheries Development Program Funded Hatcheries Operated by the Washington Department of Game in 1984

	Fall Ch	inook			Steelh	ead		
	URB	Tule	Sp Chinook	Coho	Winter	Summer	Chum	Total
Beaver Creek					2,043		1,019	3,062
Skamania					1,016	3,576		4,592
Ringold						950		950
TOTAL					3,059	4,526	1,019	8,604
-								

Rearing Facility	Tag Code	Number Released	Catch	Return	Catch/ 1,000 Release	Percent Survival s
Big Creek	7-18-44	224,900	576	190	2.6	.3
Bonneville	7-18-42	287,900	822	297	2.9	. 4
	7-18-43	15,100	0	4	0	.0
Klaskanine	7-18-45	244,100	287	14	1.2	.1
Stayton Pond	7-18-41	283,800	1,793	250	6.3	.7
Sea Resources	63-19-18	24,200	24	0	1.0	.1
Abernathy	5-4-50	63,400	280	52	4.4	.5
-	5-4-51	48,900	180	42	3.7	.5
Big White Pond	5-4-43	141,400	270	56	1.9	.2
Little White Salmon	5-4-48	177,800	30	10	.2	.0
	5-4-49	264,800	36	10	.1	.0
Spring Creek	5-4-33	140,900	1,412	243	10.0	1.2
	5-4-44	135,500	2,170	363	16.0	1.9
	5-4-45	55,600	2	1	.0	.0
	5-4-46	246,000	1,157	191	4.7	.5
Cowlitz	63-19-42	143,600	222	96	1.6	.2
	63-19-51	11,100	65	24	5.9	.8
Elokomin	63-18-56	21,100	3	2	.1	.0
	63-19-56	117,800	9	0	.9	.0
Grays River	63-16-46	73,900	25	10	.3	.0
-	63-18-33	7,600	4	2	.5	.1
	63-19-37	68,100	27	8	.4	.1
Kalama Falls	63-19-57	214,500	71	35	.3	.0
Klickitat	63-19-49	225,400	240	0	1.1	.1
Priest Rapids	63-18-21	48,100	83	49	1.7	.3
• • • • • • • • • • • • • • • • • • •	63-18-57	17,500	8	2	.5	.1
	63-19-58	5.300	2	1	.4	.1
	63-20-17	82,200	23	15	.3	.0

Appendix Table 15. -- Release, catch and return statistics for 1978-brood fall chinook by facility and tag code.

Appendix Table 15. (Continued)

1

	Tag	Number			Catch/	Percent
Rearing facility	Code	Released	Catch	Return	1,000	Survival
					Release	S
Speelyai	63-19-20	51,700	110	17	2.1	.2
	63-19-50	104,500	149	30	1.4	.2
Toutle	63-18-54	12,000	8	3	.7	.1
	63-19-41	132,100	108	38	.8	.1
Washougal	63-19-38	97,400	80	23	.8	.1
	63-19-46	154,500	124	40	.8	.1
Weyco Pond	63-19-39	92,400	61	9	.7	.1
TOTAL		4,035,100	10,491	2,127	2.6	.3

	c	hinook by facility	and tag code.			
R	earing Facility	Tag Code	Number Released	Catch	Return	Catch/ 1,000 Releases
	Big Creek	7-21-60	143,400	1,060	261	7.4
	Bonneville	7-21-57	121,100	111	31	.9
	Klaskanine	7-21-61	66,300	79	2	1.2
	OxBow	7-21-62 7-21-63	49,4 00 51,900	37 85	8 14	.7 1.6
	Stayton Pond	7-20-55	282,000	1,746	187	6.2
	Sea Resources	63-20-61	18,400	2	21	.1
	Abernathy	5-6-44 6-6-46	35,200 112,500	164 368	32 114	4.7 3.3

Appendix Table 16. -- Release, catch and return statistics for 1979-brood fall chinook by facility and tag code.

TOTAL		2,864,700	8,665	1,937	3.0
Weyco Pond	H1-2-3	97,800	54	29	.6
Washougal	63-21-53	314,600	359	246	1.1
Priest Rapids	63-19-48	147,200	115	145	.8
Lower Kalama	63-20-6	144,500	91	38	.6
Lewis River	63-21-60	103,700	135	34	1.3
Klickitat	63-19-47	156,100	176	10	1.1
Kalama Falls	63-21-5	100,400	83	76	.8
Grays River	63-20-43	37,500	31	10	.8
Elokomin	63-20-5	98,400	35	10	.8
63-21-59	63-21-59	70,500	44	19	.6
Cowlitz	63-21-37 63-21-54	20,700 244,300	88 113	62 60	4.3
	5-6-42	23,100	64	15	2.8
	5-6-40	60,500	1,182	135	18.9
Spring Creek	5-6-39	125,500	1,236	196	9.8
Little White Salmon	5-6-43	162,600	47	2	.3
ADELIIACIIY	6-6-46	112,500	368	114	3.3
Abarnathu	5-6-44	35 200	164	32	4 7
Sea Resources	63-20-61	18,400	2	21	.1
Stayton Pond	7-20-55	282,000	1,746	187	6.2
OxBow	7-21-62 7-21-63	49,400 51,900	37 85	8 14	.7 1.6

Appendix 17

BIOENGINEERING ACTIVITIES PARTIAL LISTING OF PROJECTS DURING F.Y. 1984

I. Review and Establishment of Fish Facility Design -1. Bonneville Dam - adult and juvenile fish passage facilities 2. The Dalles Dam - adult passage and counting facilities 3. John Day Dam - juvenile passage facilities 4. McNary Dam - adult and juvenile passage facilities 5. Little Goose Dam - juvenile passage facilities 6. Winchester hydro project - adult and juvenile protection facilities 7. Yakima River Passage Projects - fish screens and ladders 8. Three Mile Dam - adult and juvenile passage facilities 9. Stayton Ditch Hydro Project - adult and juvenile passage 10. Tumwater and Dryden dams - adult passage 11. Crabtree Creek proposed hydro project - adult and juvenile fish passage facilities 12. Zillah proposed hydro project - adult and juvenile fish passage facilities 13. Boyd proposed hydro project - adult and juvenile passage facilities 14. Olney Falls proposed hydro project - juvenile passage 15. Rock Island Dam - juvenile bypass 16. Rocky Reach Dam - juvenile bypass Horn Rapids Dam - adult and juvenile passage 17. 18. Marmot Dam - adult and juvenile passage 19. Lower Snake River Compensation Plan - hatchery facilities 20. Leaburg hydro project - juvenile and adult passage 21. Sullivan Plant - juvenile passage 22. Priest Rapids Dam - juvenile passage studies 23. Wanapum Dam - juvenile passage studies 24. White River (Washington) Hydro Project - juvenile and adult passage II. Review of Fish Facility Construction and/or Operation Bonneville Dam - adult and juvenile passage 1. 2. Priest Rapids Dam - adult passage

- 3. Wanapum Dam adult passage
- 4. Rock Island Dam adult passage
- 5. Rocky Reach Dam adult passage
- 6. Wells Dam adult passage
- 7. Little Goose Dam juvenile passage

III. Assistance in Design Review

- 1. Corps of Engineers Permits (numerous sites)
- 2. Beaver Creek Hatchery Water Intake Modification

IV. Responses to Requests from Other Regions and Agencies

- U.S. Fish and Wildlife Service review of Michigan State fishway designs
- 2. U.S. Fish and Wildlife Service review of passage problems at Red Bluff Dam and Tehama-Colusa Canal, California
- 3. NMFS Southwest Region fish protection for Tulare Lake dewatering project and adult passage facilities at Cape Horn Dam